| 研究生: |
蔡宛霖 Tsai, Wan-lin |
|---|---|
| 論文名稱: |
考量碳稅政策之最適能源投入要素組合 The Optimal Energy Production Factor Portfolio under Carbon Tax Policy |
| 指導教授: |
耿伯文
Kreng, Victor B. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 碳稅 、多目標規劃 、經濟-能源-環境 、能源投入組合 |
| 外文關鍵詞: | Multi-objective Programming, Economics-Energy-Environment, Carbon Tax, Energy Portfolio |
| 相關次數: | 點閱:157 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聯合國在1992年地球高峰會舉辦之時,通過「聯合國氣候變化綱要公約」(United Nations Framework Convention on Climate Change, UNFCCC),對「人為溫室氣體」(Anthropogenic Greenhouse Gas),排放做出全球性管制的宣示,並於1997年12月通過具有約束效力的京都議定書(Kyoto Protocol),以規範工業國家未來之溫室氣體減量責任,以達到溫室氣體減量的目標。各國除加入碳排放交易市場外,主要透過課徵綠色租稅來抑制溫室氣體排放。
基於永續環境觀念,呼應京都議定書設立的溫室氣體減量目標,企業生產時應同時兼顧經濟以及環境的問題,且為降低對於環境的迫害及資源永續,能源的使用也應受到重視,應盡量降低能源的使用量,因此,現今的企業進行生產活動時,同時應兼顧經濟、環境、能源等目標。
碳稅的實施將會影響企業的生產活動,本研究以生產投入面為觀點,同時考量碳稅與生產要素間具替代之關係,建構一多目標規劃數學模型,進行事前的最佳化評估,尋求在碳稅制度下的最適生產投入要素組合,並達到生產成本最小、能源使用最少、二氧化碳排放量最小等三大目標。
本研究發現替代彈性及碳稅會同時影響企業的生產投入要素組合, 替代彈性值大的情境需存在碳稅制度,二氧化碳減量效果才會顯現,碳稅越高減量效果越明顯。在 替代彈性值大的情境下,各目標對於碳稅制度的反應較不明顯。
本研究於生產中加入替代彈性的考量,更能反應企業回應碳稅的行動,本研究可以提供企業生產決策者因應碳稅政策擬定決策行動,亦可以提供環境政策制定者,預估企業在不同的環境政策下的可能行動,提供環境政策制定者政策制定的策略性思考。
The United Nations passed the “United Nations Framework Convention on Climate Change(UNFCCC)"in 1992, and started to control anthropogenic greenhouse gas emissions. In December 1997, it passed the “Kyoto Protocol” to set standards for decreases in emissions of greenhouse gases and to assert the responsibility of industrialized countries for the already existing pollution. Countries are working to reduce these emissions by either cap and trade or green tax policies.
In order to meet the demands of the Kyoto Protocol and to become more environmentally-friendly, enterprises should consider both economics and the environment at the same time, and reducing the use of fossil fuels is one key way to achieve this. Owing to the above reasons, the enterprises should simultaneously consider the targets of economics, environment, and energy.
Enterprises will be affected by carbon tax policies. This study simultaneously considers such policies and the substitution between production factor inputs, and constructs a multi-objective model to optimize the energy production factor portfolio under a carbon tax policy, in order to minimize the cost of production, use of energy, and emission of greenhouse gases.
This study finds that the elasticity of substitution and carbon tax simultaneously affect the optimal energy production factor portfolio. With greater elasticity of substitution , the reduction in emissions will be significant if there is a carbon tax policy, and if the tax is high, then the reduction will also be high. With greater elasticity of substitution , it is not sensitive to a carbon tax.
This study considers the elasticity of substitution, and how enterprises can respond appropriately if governments decide to impose a carbon tax. This study can help firms to make the right decisions with regard to such taxes, or help policy makers to forecast the reactions of businesses to different policies and think strategically.
Baker, E., & Shittu, E. (2006). Profit-maximizing R&D in response to a random carbon tax. Resource and Energy Economics, 28(2), 160-180.
Besanko, D., & Braeutigam, R. R. (2002). Microeconomice: an integrated approach.
Caldeira, K., Jain, A. K., & Hoffert, M. I. (2003). Climate sensitivity uncertainty and the need for energy without CO2 emission. Science, 299(5615), 2052-2054.
Carbon Tax Center. from http://www.carbontax.org/
Carraro, C., & Galeotti, M. (1997). Economic growth, international competitiveness and environmental protection: R & D and innovation strategies with the WARM model. Energy Economics, 19(1), 2-28.
Chakravorty, U., Roumasset, J., & Tse, K. (1997). Endogenous substitution among energy resources and global warming. Journal of Political Economy, 105, 1201-1234.
Cohon, J. L. (1978). Multiobjective Programming and Planning New York.
Farzin, Y. H., & Kort, P. (2000). Pollution abatement investment when environmental regulation is uncertain. Journal of Public Economic Theory, 2, 183-212.
Gerlagh, R., & Lise, W. (2005). Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change. Ecological Economics, 54(2-3), 241-260.
Goulder, L. H. (1995). Effects of Carbon Taxes in an Economy with Prior Tax Distortions: An Intertemporal General Equilibrium Analysis. Journal of Environmental Economics and Management, 29(3), 271-297.
Goulder, L. H., & Schneider, S. H. (1999). Induced technological change and the attractiveness of CO2 abatement policies. Resource and Energy Economics, 21(3-4), 211-253.
Karki, S., Mann, M. D., & Salehfar, H. (2006). Substitution and Price Effects of Carbon Tax on CO2 Emissions Reduction from Distributed Energy Sources. Paper presented at the Power Systems Conference: Advanced Metering, Protection, Control, Communication, and Distributed Resources, 2006. PS '06.
Kemfert, C., & Truong, T. (2007). Impact assessment of emissions stabilization scenarios with and without induced technological change. Energy Policy, 35(11), 5337-5345.
Kemfert, C., & Welsch, H. (2000). Energy-Capital-Labor Substitution and the Economic Effects of CO2 Abatement: Evidence for Germany. Journal of Policy Modeling, 22(6), 641-600.
Kitamura, S., Mori, K., Shindo, S., & Izui, Y. (2006). Modified multiobjective particle swarm optimization method and its application to energy management system for factories. Electrical Engineering in Japan, 156(4), 33-42.
Kowalski, K., Stagl, S., Madlener, R., & Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis.
Lochel, A. (2002). Technological change in economic models of environmental policy: a survey. Ecological Economics, 43(2-3), 105-126.
Martin, J. M. B. J. P., Nicoletti, G., & Martin, J. O. (1991). GREEN - - A Multi-Region Dynamic General Equilibrium Model for Quantifying the Costs of Curbing CO2 Emissions: A Technical Manual. OECD Economics Department Working Papers, 104.
Nakata, T. (2004). Energy-economic models and the environment. Progress in Energy and Combustion Science, 30(4), 417-475.
Popp, D. (2004). ENTICE: endogenous technological change in the DICE model of global warming. Journal of Environmental Economics and Management, 48(1), 742-768.
Popp, D. C. (2001). The effect of new technology on energy consumption. Resource and Energy Economics, 23(3), 215-239.
Popp, D. C. (2002). Induced Innovation and Energy Prices. American Economic Review, 92(1), 160-180.
Sue Wing, I. (2003). Induced technical change and the cost of climate policy.
Zadeh, L. A. (1963). Optimality and Nonscalar-Valued Performance Criteria. IEEE Transactions on Automatic Control, 8(1), 59-60.
Zeleny (1982). Multiple Criteria Decision Making. New York: McGraw-Hill.
Zinger, I., Oughton, D. H., & Jones, S. R. (2008). Stakeholder interaction within the ERICA Integrated Approach. Journal of Environmental Radioactivity, 99(9), 1503-1509.
王京明 (2007). 實施碳稅或能源稅對供電部門的影響分析: 中華經濟研究院.
林裕文 (1994). 二氧化碳排放限制下我國產業與能源使用因應策略: 多目標規劃應用. 國立成功大學.
張四立 (1995). 我國能源、環境與經濟發展互動關係之研究.
張四立 (1997). 抑制二氧化碳排放之政策規劃與減量評估. Paper presented at the 因應溫室效應之經濟工具及其影響研討.
梁啟源 (2008). 能源稅、碳稅與碳權交易之整合. 中央研究院.
梁啟源, 吳中書, 林金龍, & 何金巡 (1999). 碳稅政策對二氧化碳排放及台灣經濟發展的影響. 行政院環境保護署.
莊銘池 (1995). 溫室氣體減量措施之研擬與評估研究-多目標決策模型之建立與應用. 國立中興大學.
許志義 (2003). 多目標決策. 台北市: 五南圖書出版股份有限公司.
陳洪宛, & 張磊 (2009). 我國當前實行碳稅促進溫室氣體減排的可行性思考. 財經論壇(142), 35-40.
黃英娜, 張巍, & 王學軍 (2003). 環境CGE模型中生產函數的計量經濟估算與選擇. 環境科學學報, 23(3), 350-354.
黃耀輝, 羅時萬, & 吳元利 (2005). 我國實施能源稅、碳稅級綠色稅制之研究.
溫麗琪, & 李盈嬌 (2008). 我國徵收能源稅可行性分析. 中華經濟研究院.
經濟部能源局 (2008). 中華民國96年能源統計手冊.
駱璟樺 (2004). 我國電力部門再生能源發展之經濟與環境效益評估. 國立臺北大學.
校內:2029-07-13公開