簡易檢索 / 詳目顯示

研究生: 林顯宗
Lin, Hsien-Tsung
論文名稱: 添加水氣在純氧對流環境下單顆木顆粒之點燃與燃燒機制
Ignition and Combustion Mechanisms of a Single Wood Pellet under Convective Oxy-Fuel Atmospheres with Steam Addition
指導教授: 趙怡欽
Chao, Yei-Chin
共同指導教授: 陳冠邦
Chen, Guan-Bang
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 146
中文關鍵詞: 木顆粒受熱行為對流熱傳燃燒過程純氧燃燒O2/CO2/H2O環境點燃機制
外文關鍵詞: Wood pellets, Thermal behavior, Convection, Combustion process, Oxy-fuel combustion, O2/CO2/H2O atmosphere, Ignition mechanism
相關次數: 點閱:95下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純氧燃燒與碳捕捉封存被視為兼顧產能與低汙染排放之潛力燃燒技術之一,若結合具碳中和特性之生質料於能源系統(產電/熱),亦可逐漸降載對化石燃料的高度依賴與達成負碳排之目標。有別於傳統空氣燃燒,純氧燃燒時需將部分煙道氣體迴流至燃燒室用以控制爐溫,可分為乾迴流(O2/CO2)與濕迴流(O2/H2O/CO2)。其中濕迴流模式下的生質料燃燒過程極為複雜,牽涉許多異相與氣相反應及燃燒現象仍待釐清。因此,本研究選用木顆粒作為代表燃料,探討在不同溫度與氣體氛圍中的點燃與燃燒機制。首先透過成份分析、熱重分析、恆溫裂解產氣等實驗進行燃料基礎受熱特性探討,並建置一套新型單顆料錠燃燒系統,量測木顆粒在均溫強制對流環境(空氣、乾/濕迴流純氧燃燒)下之影像、質量、顆粒溫度與尾氣變化。最後利用反應動力學搭配化學反應機制模擬氣態揮發份(C0-C3碳氫燃料)的自動點燃特性。
    熱重分析結果顯示,木顆粒在空氣下的質量流失溫度區間主要在240–400°C與400–520°C,異相點燃發生在293°C,整體活化能約介於108.8–184.8 (kJ/mol)。然而,在空氣環境下之燃燒特性指數(Dv, Di, Db與S index)顯示與21–30%之純氧環境(O2/CO2)相當。單顆木顆粒(0.5 g)在恆溫下的燃燒實驗發現當環境氣流溫度Ts ≥ 550°C時有明顯的氣態火焰點燃,且在Ts = 650°C時機制發生了轉變,這是由於快速脫揮發導致氧氣在受熱初期無法擴散至焦炭表面,因此氣相點燃率先發生。尾氣分析呈現焦炭燃燒階段具有較高的CO排放,揮發份燃燒時氣態燃料則傾向轉為CO2。基於不同起始溫度與氣體環境,歸納了熱裂解、異相氧化、氣相氧化與異相氣化反應,並確立了焦炭與氣態火焰之點燃溫度區間,可作為生質料在熱化學轉換應用時之操作參考。
    在Ts = 550°C與Re = 450之純氧對流環境下,氣態火焰穩駐燃燒發生在氧氣濃度需大於21%。而隨著H2O取代CO2,顆粒燃燒溫度與重量流失速率均明顯提升。當Oxy-21%時,若以H2O取代20%的CO2,反應時間ti,char、ti,flame、tchar與ttotal分別縮短7.89%、6.02%、17.98%與16.05%,這是由於H2O相較於CO2具有較高的熱擴散係數(約2.1倍),且O2在H2O中的質量擴散能力也較高(約1.61倍),因此促進整體反應速率的提升。此外,發現tflame大幅度地上升約266%,此為H2O增進了焦炭氣化反應並轉移部份燃料至可燃性氣體的緣故。最後歸納在純氧環境(15–33% O2搭配0–50% H2O)下的正規化焦炭燃燒時間關係式為[O2]-1.616[H2O]-0.232,顯示氣體與焦炭的反應速率依序為char-O2 > char-H2O > char-CO2。此外,木顆粒在27%O2/73%CO2及21%O2/50%H2O/29%CO2環境下的總燃燒時間顯示與空氣燃燒相當。
    數值模擬結果顯示除了CO之外,大多數C0-C3燃料可在450–550°C空氣中引燃,與實驗觀測到的揮發分火焰點燃溫度區間相似。在550°C純氧環境中,點燃時間隨著O2與H2O濃度的提升而降低。在Oxy-21%環境下且H2O逐漸取代CO2時,可發現OH與H自由基濃度明顯提升,且主導最大熱釋率的反應步驟顯示逐漸由R3(H2+OH↔H+H2O)與R91(CH3+O↔CH2O+H)轉移至R35(CO+OH↔CO2+H)與R6(H+OH+M↔H2O+M)。點燃時間的靈敏度分析則顯示R98 (CH3+HO2↔CH3O+OH)、R156 (CH2O+HO2↔HCO+H2O2)與R46 (CH4+HO2↔CH3+H2O2)為主導步驟。最後,關於H2O在純氧對流環境下取代CO2時促進生質料的氣相引燃現象,本研究提出以流體停滯時間(tflow)與化學反應時間(tchem)之關係式加以描述。添加水氣會導致燃料脫揮發速率與氣相化學反應速率提升,降低tchem,使達姆科勒數(Damköhler number)的上升速率高於在O2/CO2環境下,率先達臨界值而發生火焰引燃。本研究提供了對生質料點燃和燃燒基本原理的探討,可作為未來將生質料應用在濕迴流純氧燃燒系統之參考。

    Oxy-fuel combustion is a promising strategy for carbon capture and storage (CCS). The transition from burning fossil fuels to carbon-neutral biomass enables negative CO2 emissions with CCS. Nowadays, numerous studies have compared coal combustion in O2/CO2 with air. However, due to the complexity of the thermal behaviors in ignition and char conversion stages, the combustion of biomass pellets in wet flue gas recirculation scenario remains unclear and there is scarce literature. In this study, the ignition and combustion mechanism of a single wood pellet in air and oxy-atmospheres over wide temperature ranges has been investigated and implemented by several experimental approaches, such as TG-FTIR analysis, packed-bed pyrolysis, and a novel single-particle combustion under isothermal convective heating. In addition, kinetic modeling was carried out by CHEMKIN simulation to identify the autoignition characteristics of volatile fuels.
    The results showed that wood primarily decomposed between 240–520°C, and the heterogeneous ignition was found to occur at 293°C as the hemicellulose component in wood could initiate the exothermic reaction at a low temperature. The rate of char combustion highly depends on oxygen diffusion. The combustibility index revealed that wood combustion in the air is similar in the range of oxy 21–30%. Regarding pellet combustion in an isothermal hot air stream, a unique heterogeneous-induced homogeneous combustion phenomenon was observed at stream temperature Ts ≥ 350°C. In addition, the ignition mechanism shifted to homogeneous mode at 650°C because of the interplay of devolatilization and O2 diffusion near the fuel surface. It was also observed that char combustion favored the production of CO, and volatiles burning tended to convert fuel into CO2. Based on the temperature and gas surroundings, a reaction scheme including pyrolysis, heterogeneous oxidation, homogeneous oxidation, and heterogeneous gasification of wood pellets was identified.
    According to oxy-fuel combustion under 550°C and Re = 450 conditions, the stabilized volatile flame around the wood pellet appeared when O2 ≥ 21%. With H2O partially replacing 20% of CO2 at oxy-21%, the ignition delay time of char (ti,char) and flame (ti,flame), char combustion duration (tchar), and total combustion time (ttotal) reduced 7.89%, 6.02%, 17.98%, and 16.05% was found, respectively. It is attributing that H2O possesses a higher thermal diffusivity (2.1 times) and O2 mass diffusivity (1.61 times) than CO2, which promotes combustion. In particular, volatile flame burning duration (tflame) significantly elevated 266% due to char-H2O gasification reaction shifting carbon to flammable fuels to sustain the flame. The obtained correlation equation of normalized char combustion time was varied by [O2]-1.616[H2O]-0.232 relation in O2/H2O/CO2 atmospheres under 15–33% O2 and 0–50% H2O combination, demonstrating that reaction rates follow char-O2 > char-H2O > char-CO2. Furthermore, ttotal of wood combustion under 27%O2/73%CO2 and 21%O2/50%H2O/29%CO2 condition was found comparable with that in air.
    The simulations showed that radicals (OH, H) were enhanced with steam addition in oxy-combustion, leading to a shorter ignition time. The dominant reactions for heat release rate were gradually shifted from (R3) H2+OH↔H+H2O and (R91) CH3+O↔CH2O+H to (R35) CO+OH↔CO2+H and (R33) H+OH+M↔H2O+M with steam addition. In summary, an overall conceptual Damköhler number (Da = tflow/tchem) evolution in the gas-phase region was proposed based on the competition of chemical time (tchem) and flow residence time (tflow) to illustrate the faster ignition of H2O substitute CO2 in oxy-combustion. The growth of additional volatiles by char-H2O gasification and chemical reaction rate enhancement resulted in a faster increase of Da number from zero to reach a critical value for flame ignition. This study provides insight into biomass ignition and combustion fundamentals, which is beneficial to its application in industrial oxy-combustion systems.

    誌謝 i 摘要 ii 第一章 簡介 v 第二章 生質料之純氧燃燒文獻回顧 vi 第三章 研究方法 vii 第四章 燃料性質與受熱行為分析 viii 第五章 木顆粒在中低溫強制對流空氣下之燃燒過程 ix 第六章 木顆粒在含水氣環境下之純氧燃燒特性 x 第七章 結語 xi ABSTRACT xii CONTENTS xv LIST OF TABLES xvii LIST OF FIGURES xviii LIST OF NOMENCLATURE xxiv CHAPTER 1 Introduction 1 1.1 Biomass Combustion for Energy Production 1 1.2 Oxy-Fuel Combustion 5 1.3 Thesis Outline 7 CHAPTER 2 Literature Reviews on Oxy-Biomass Combustion 10 2.1 Thermochemical Conversion of Biomass 11 2.2 Combustion Model of Solid Fuel 14 2.3 Oxy-Fuel Combustion with Steam Addition 23 2.4 Motivation and Objectives 32 CHAPTER 3 Experimental Apparatus and Research Method 35 3.1 Material Characteristics 35 3.2 TG-FTIR Method 37 3.3 Steam Generator 41 3.4 Experimental Apparatus and Conditions 44 3.5 Oven and Tubular Furnace 49 3.6 Kinetics Modeling of Gas-Phase Reaction 51 CHAPTER 4 Fuel Property and Thermal Behavior Analysis 54 4.1 Fuel Characterization 54 4.2 TG-FTIR Analysis 58 4.3 Gas Yield of Batch Fuel under Isothermal Pyrolysis 73 CHAPTER 5 The Combustion Process of Wood Pellets at Convective Intermediate-to-Low Temperature Air 79 5.1 Combustion Process in Air 79 5.2 The Characteristics Times of Combustion 97 5.3 A Simplified Reaction Scheme based on Temperature 100 CHAPTER 6 The Combustion Characteristics of Wood Pellet under Oxy-Fuel Atmospheres with Steam Addition 105 6.1 The Effect of Oxygen and Steam Concentration on Combustion 105 6.2 The Ignition Time of Volatiles by Kinetic Modeling 118 6.3 Autoignition Characteristics of CH4 under O2/H2O/CO2 Atmospheres 122 6.4 The Ignition Mechanism of Oxy-Biomass Combustion with Steam Addition 128 CHAPTER 7 Conclusions and Recommendations 133 7.1 Key findings and Conclusion 133 7.2 Recommendations for Future Work 135 Reference 137

    Abdalla, A.M., Hossain, S., Nisfindy, O.B., Azad, A.T., Dawood, M., Azad, A.K., 2018. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 165, 602–627.
    Abdoli, M.A., Golzary, A., Hosseini, A., Sadeghi, P., 2018. Wood Pellet as a Renewable Source of Energy, Springer.
    Abraham, B., Asbury, J., Lynch, E., Teotia, A., 1982. Coal-oxygen process provides CO2 for enhanced recovery. Oil Gas J.
    Ahn, J., Kim, H.J., 2020. Combustion process of a Korean wood pellet at a low temperature. Renew. Energy 145, 391–398.
    Alberti, M., Weber, R., Mancini, M., 2018. Gray gas emissivities for H2O-CO2-CO-N2 mixtures. J. Quant. Spectrosc. Radiat. Transf. 219, 274–291.
    Anderson, M.K., Sleight, R.T., Torero, J.L., 2000. Downward smolder of polyurethane foam: Ignition signatures. Fire Saf. J. 35, 131–147.
    Babin, A., Vaneeckhaute, C., Iliuta, M.C., 2021. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: A review. Biomass and Bioenergy 146.
    Bagheri, G., Ranzi, E., Pelucchi, M., Parente, A., Frassoldati, A., Faravelli, T., 2020. Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane. Combust. Flame 212, 142–155.
    Bai, C., Zhang, W., Deng, L., Zhao, Y., Sun, S., Feng, D., Wu, J., 2022. Experimental study of nitrogen conversion during char combustion under a pressurized O2/H2O atmosphere. Fuel 311, 122529.
    Basu, P., 2018. Chapter 3 - Biomass Characteristics, in: Basu, P. (Ed.), Biomass Gasification, Pyrolysis and Torrefaction (Third Edition). Academic Press, pp. 49–91.
    Bergman, T.L., Lavine, A.S., Incropera, F.P., DeWitt, D.P., 2017. CHAPTER 7 External Flow, in: Fundamentals of Heat and Mass Transfer. Wiley, United States of America, pp. 417–420.
    Bergthorson, J.M., 2018. Recyclable metal fuels for clean and compact zero-carbon power. Prog. Energy Combust. Sci. 68, 169–196.
    Bi, H., Lin, Q., Wang, C., Jiang, X., Jiang, C., Bao, L., 2020. An experimental study of single unconventional biomass pellets: Ignition characteristics, combustion processes, and artificial neural network modeling. Int. J. Energy Res. 44, 2952–2965.
    Bu, C., Gómez-Barea, A., Leckner, B., Wang, X., Zhang, J., Piao, G., 2020. The effect of H2O on the oxy-fuel combustion of a bituminous coal char particle in a fluidized bed: Experiment and modeling. Combust. Flame 218, 42–56.
    Burnett, M.A., Wooldridge, M.S., 2021. An experimental investigation of flame and autoignition behavior of propane. Combust. Flame 224, 24–32.
    Cai, L., Zou, C., 2018. Chapter 15 - Oxy-Steam Combustion, in: Zheng, C., Liu, Z. (Eds.), Oxy-Fuel Combustion. Academic Press, pp. 325–338.
    Cai, L., Zou, C., Guan, Y., Jia, H., Zhang, L., Zheng, C., 2016. Effect of steam on ignition of pulverized coal particles in oxy-fuel combustion in a drop tube furnace. Fuel 182, 958–966.
    Cesprini, E., Resente, G., Causin, V., Urso, T., Cavalli, R., Zanetti, M., 2020. Energy recovery of glued wood waste – A review. Fuel 262, 116520.
    Chen, G.B., Wu, F.H., Fang, T.L., Lin, H.T., Chao, Y.C., 2021. A study of Co-gasification of sewage sludge and palm kernel shells. Energy 218, 119532.
    Chen, J., Wang, Y., Lang, X., Ren, X., Fan, S., 2017. Comparative evaluation of thermal oxidative decomposition for oil-plant residues via thermogravimetric analysis: Thermal conversion characteristics, kinetics, and thermodynamics. Bioresour. Technol. 243, 37–46.
    Chen, L., Yong, S.Z., Ghoniem, A.F., 2012. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling. Prog. Energy Combust. Sci. 38, 156–214.
    Chen, W.H., Lin, B.J., Lin, Y.Y., Chu, Y.S., Ubando, A.T., Show, P.L., Ong, H.C., Chang, J.S., Ho, S.H., Culaba, A.B., Pétrissans, A., Pétrissans, M., 2021. Progress in biomass torrefaction: Principles, applications and challenges. Prog. Energy Combust. Sci. 82, 100887.
    Chi, C.C., Lin, T.H., Huang, W.C., Hou, S.S., Wang, P.Y., 2015. Achievement of high CO2 concentration in the flue gas at slightly positive pressure during oxy-coal combustion in a 300 kWth furnace. Fuel 160, 434–439.
    Chi, H., Su, S., Li, H., Xu, K., Leong, H., Xu, J., Jiang, L., Wang, Y., Hu, S., Xiang, J., 2021. Effects of CO2 and H2O on oxy-fuel combustion characteristics and structural evolutions of Zhundong coal pellet at fast heating rate. Fuel 294, 120525.
    Curran, H.J., 2019. Developing detailed chemical kinetic mechanisms for fuel combustion. Proc. Combust. Inst. 37, 57–81. https://doi.org/10.1016/j.proci.2018.06.054
    David Dandy, 2019. Transport Properties Calculator http://navier.engr.colostate.edu/code/code-2/index.html
    Dhyani, V., Bhaskar, T., 2018. A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 129, 695–716.
    DiBlasi, C., 2009. Combustion and gasification rates of lignocellulosic chars. Prog. Energy Combust. Sci. 35, 121–140.
    Ding, Y., Huang, B., Li, K., Du, W., Lu, K., Zhang, Y., 2020. Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy 195, 117010.
    Drysdale, D., 2011. Spontaneous Ignition within Solids and Smouldering Combustion, in: An Introduction to Fire Dynamics. John Wiley & Sons, Ltd, pp. 317–348.
    Dueso, C., Mayoral, M.C., Andrés, J.M., Escudero, A.I., Díez, L.I., 2019. Towards oxy-steam combustion: The effect of increasing the steam concentration on coal reactivity. Fuel 239, 534–546.
    Eo, J.W., Kim, M.J., Jeong, I.S., Cho, L.H., Kim, S.J., Park, S., Kim, D.H., 2021. Enhancing thermal efficiency of wood pellet boilers by improving inlet air characteristics. Energy 228, 120475.
    Escudero, A.I., Aznar, M., Díez, L.I., 2021. Oxy-steam combustion : The effect of coal rank and steam concentration on combustion characteristics. Fuel 285, 119218.
    Escudero, A.I., Aznar, M., Díez, L.I., Mayoral, M.C., Andrés, J.M., 2020. From O2/CO2 to O2/H2O combustion : The effect of large steam addition on anthracite ignition , burnout and NOx formation. Fuel Process. Technol. 206, 106432
    Fajardy, M., Chiquier, S., MacDowell, N., 2018. Investigating the BECCS resource nexus: Delivering sustainable negative emissions. Energy Environ. Sci. 11, 3408–3430.
    Gao, J., Qi, X., Zhang, D., Matsuoka, T., Nakamura, Y., 2021. Propagation of glowing combustion front in a packed bed of activated carbon particles and the role of CO oxidation. Proc. Combust. Inst. 38, 5023–5032.
    Gao, Y., Gao, X., Zhang, X., 2017. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 3, 272–278.
    Ghoniem, A.F., Zhao, Z., Dimitrakopoulos, G., 2019. Gas oxy combustion and conversion technologies for low carbon energy: Fundamentals, modeling and reactors. Proc. Combust. Inst. 37, 33–56.
    Gianfelice, G., Canu, P., 2021. On the mechanism of single pellet smouldering combustion. Fuel 301, 121044.
    Glass, S.V, Zelinka, S.L., 2010. CHAPTER 4 Moisture Relations and Physical Properties of Wood, in: Wood Handbook : Wood as an Engineering Material. Forest Products Laboratory • United States Department of Agriculture Forest Service, Madison, Wisconsin, pp. 1–20.
    Gómez-Barea, A., Leckner, B., 2010. Modeling of biomass gasification in fluidized bed. Prog. Energy Combust. Sci. 36, 444–509.
    Goor, G., Glenneberg, J., Jacobi, S., Dadabhoy, J., Candido, E., 2019. Hydrogen Peroxide, in: Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons.
    Gribi, B., Lin, Y., Hui, X., Zhang, C., Sung, C.J., 2018. Effects of hydrogen peroxide addition on combustion characteristics of n-decane/air mixtures. Fuel 223, 324–333.
    Hanson, R.K., Spearrin, R.M., Goldenstein, C.S., 2016. Spectroscopy and Optical Diagnostics for Gases, Spectroscopy and Optical Diagnostics for Gases. Springer.
    Hasse, C., Debiagi, P., Wen, X., Hildebrandt, K., Vascellari, M., Faravelli, T., 2021. Advanced modeling approaches for CFD simulations of coal combustion and gasification. Prog. Energy Combust. Sci. 86, 100938.
    Horn, F.L., Steinberg, M., 1982. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel 61, 415–422.
    Huang, J., Liu, J., Chen, J., Xie, W., Kuo, J., Lu, X., Chang, K., Wen, S., Sun, G., Cai, H., Buyukada, M., Evrendilek, F., 2018. Combustion behaviors of spent mushroom substrate using TG-MS and TG-FTIR: Thermal conversion, kinetic, thermodynamic and emission analyses. Bioresour. Technol. 266, 389–397.
    Huang, J., Liu, J., Kuo, J., Xie, W., Zhang, X., Chang, K., Buyukada, M., Evrendilek, F., 2019. Kinetics, thermodynamics, gas evolution and empirical optimization of (co-)combustion performances of spent mushroom substrate and textile dyeing sludge. Bioresour. Technol. 280, 313–324.
    Huang, X., Gao, J., 2021. A review of near-limit opposed fire spread. Fire Saf. J. 120, 103141.
    Huang, X., Rein, G., 2016. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena. Bioresour. Technol. 207, 409–421.
    Hupa, M., Karlström, O., Vainio, E., 2017. Biomass combustion technology development - It is all about chemical details. Proc. Combust. Inst. 36, 113–134.
    IEA, 2020. Key World Energy Statistics 2020, International Energy Agency.
    Jiang, X., Chen, D., Ma, Z., Yan, J., 2017. Models for the combustion of single solid fuel particles in fluidized beds: A review. Renew. Sustain. Energy Rev. 68, 410–431.
    Jin, Q., Dai, G., Wang, Y., Wang, Z., Shan, Z., Wang, X., Zhang, L., Tan, H., Mikulčić, H., 2020. High-temperature corrosion of water-wall tubes in oxy-combustion atmosphere. J. Energy Inst. 93, 1305–1312.
    Kim, S., Lee, H., Lee, Y., Yang, W., 2021. Performance evaluation of a pressurized oxy-combustion power plant according to wet and dry flue gas recirculation. Int. J. Greenh. Gas Control 107, 103277.
    Kleinhans, U., Wieland, C., Frandsen, F.J., Spliethoff, H., 2018. Ash formation and deposition in coal and biomass fired combustion systems: Progress and challenges in the field of ash particle sticking and rebound behavior. Prog. Energy Combust. Sci. 68, 65–168.
    Kops, R.B., Pereira, F.M., Rabaçal, M., Costa, M., 2019. Effect of steam on the single particle ignition of solid fuels in a drop tube furnace under air and simulated oxy-fuel conditions. Proc. Combust. Inst. 37, 2977–2985.
    Kuo, J.T., Hsi, C.L., 2005. Pyrolysis and ignition of single wooden spheres heated in high-temperature streams of air. Combust. Flame 142, 401–412.
    Lautenberger, C., Fernandez-Pello, C., 2009. Generalized pyrolysis model for combustible solids. Fire Saf. J. 44, 819–839.
    Lee, C., Ahmed, A., Nasir, E.F., Badra, J., Kalghatgi, G., Sarathy, S.M., Curran, H., Farooq, A., 2017. Autoignition characteristics of oxygenated gasolines. Combust. Flame 186, 114–128.
    Lei, K., Ye, B., Cao, J., Zhang, R., Liu, D., 2017. Combustion characteristics of single particles from bituminous coal and pine sawdust in O2/N2, O2/CO2, and O2/H2O atmospheres. Energies 10.
    Lei, K., Zhang, R., Ye, B., Cao, J., Liu, D., 2020. Combustion of single particles from sewage sludge/pine sawdust and sewage sludge/bituminous coal under oxy-fuel conditions with steam addition. Waste Manag. 101, 1–8.
    Li, K., Zeng, Y., Luo, J.L., 2021. Corrosion performance of candidate boiler tube alloys under advanced pressurized oxy-fuel combustion conditions. Energy 215, 119178.
    Li, L., Duan, L., Zeng, D., Lu, D.Y., Bu, C., Zhao, C., 2019. Ignition and volatile combustion behaviors of a single lignite particle in a fluidized bed under O2/H2O condition. Proc. Combust. Inst. 37, 4451–4459.
    Li, Z., Jiang, L., Ouyang, J., Cao, L., Luo, G., Yao, H., 2018. A kinetic study on char oxidation in mixtures of O2, CO2 and H2O. Fuel Process. Technol. 179, 250–257.
    Lin, H., Chen, G., Chao, Y., 2021. Thermochemical conversion characteristics of a single wood pellet in a convective low‐temperature air environment. Int. J. Energy Res. 7161–7176.
    Lin, H.T., Chao, Y.C., Hsu, H.W., Chen, C.A., Chen, G.B., Wu, F.H., 2019. Hydrogen peroxide revisited: The role as an energy-saving combustion enhancer and a non-toxic green propellant for satellites and hybrid rockets, in: 12th Asia-Pacific Conference on Combustion, ASPACC 2019.
    Liu, B., Rajagopal, D., 2019. Life-cycle energy and climate benefits of energy recovery from wastes and biomass residues in the United States. Nat. Energy 4, 700–708.
    Liu, S., Wen, L., Niu, Y., Yan, B., Lei, Y., Wang, D., Hui, S., 2021. Separate physicochemical effects of CO2 on the coal char combustion: An experimental and kinetic study. Combust. Flame 111717.
    Liu, Y., Fu, P., Bie, K., Gong, Y., Xu, T., 2020. The intrinsic reactivity of coal char conversion compared under different conditions of O2/CO2, O2/H2O and air atmospheres. J. Energy Inst. 93, 1883–1891.
    Liu, Z., Zhang, T., 2018. Chapter 10 - Pilot and Industrial Demonstration of Oxy-fuel Combustion, in: Zheng, C., Liu, Z. (Eds.), Oxy-Fuel Combustion. Academic Press, pp. 209–222.
    Lu, J.J., Chen, W.H., 2015. Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis. Appl. Energy 160, 49–57.
    Luo, H., Lu, Z., Jensen, P.A., Glarborg, P., Lin, W., Dam-Johansen, K., Wu, H., Wu, H., 2021. Effect of gasification reactions on biomass char conversion under pulverized fuel combustion conditions. Proc. Combust. Inst. 38, 3919–3928.
    Ma, L., Chen, X., Yu, S., Fang, Q., Zhang, C., Chen, G., 2021. Effect of H2O on the combustion characteristics and interactions of blended coals in O2/H2O/CO2 atmosphere. J. Energy Inst. 94, 222–232.
    Malcolm W. Chase, J., 1998. NIST-JANAF thermochemical tables. Fourth edition. Washington, DC : American Chemical Society ; New York : American Institute of Physics for the National Institute of Standards and Technology, 1998.
    Martinez, S., Baigmohammadi, M., Patel, V., Panigrahy, S., Sahu, A.B., Nagaraja, S., Ramalingam, A., Heufer, K.A., Pekalski, A., Curran, H.J., 2021. A comprehensive experimental and modeling study of the ignition delay time characteristics of ternary and quaternary blends of methane, ethane, ethylene, and propane over a wide range of temperature, pressure, equivalence ratio, and dilution. Combust. Flame 234, 111626.
    McAllister, S., Chen, J.-Y., Fernandez-Pello, A.C., 2011. Fundamentals of Combustion Processes. Springer.
    McAllister, S., Finney, M., 2017. Autoignition of wood under combined convective and radiative heating. Proc. Combust. Inst. 36, 3073–3080.
    Mian, I., Li, X., Dacres, O.D., Wang, J., Wei, B., Jian, Y., Zhong, M., Liu, J., Ma, F., Rahman, N., 2020. Combustion kinetics and mechanism of biomass pellet. Energy 205, 117909.
    Mock, C., Park, H., Ryu, C., Manovic, V., Choi, S.C., 2020. Particle temperature and flue gas emission of a burning single pellet in air and oxy-fuel combustion. Combust. Flame 213, 156–171.
    Mostafa, M.E., Khedr, Y.M., Ling, P., Chi, H., Hu, S., Wang, Y., Su, S., Elsayed, S.A., Xiang, J., 2021. Experimental and numerical modelling of solid and hollow biomass pellets high-temperature rapid oxy-steam combustion: The effect of integrated CO2/H2O concentration. Fuel 303, 121249.
    Mousavi, S.M., Fatehi, H., Bai, X.-S., 2021. Multi-region modeling of conversion of a thick biomass particle and the surrounding gas phase reactions. Combust. Flame 111725.
    Niu, Y., Liu, S., Yan, B., Lv, Y., Lei, Y., Wang, D., Hui, S., 2020. Experimental and kinetics studies on separate physicochemical effects of steam on coal char combustion. Combust. Flame 220, 168–177.
    Niu, Y., Tan, H., Hui, S., 2016. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog. Energy Combust. Sci. 52, 1–61.
    OECD/NEA, 2012. The Role of Nuclear Energy in a Low-carbon Energy Future, Nuclear Development.
    Ogle, R.A., 2017. Chapter 6 - Dust particle combustion models, in: Ogle, R.A. (Ed.), Dust Explosion Dynamics. Butterworth-Heinemann, pp. 211–305.
    Paraschiv, L.S., Serban, A., Paraschiv, S., 2020. Calculation of combustion air required for burning solid fuels (coal / biomass / solid waste) and analysis of flue gas composition. Energy Reports 6, 36–45.
    Quintiere, J.G., 2006. Chapter 7 Ignition of Solids, in: Fundamentals of Fire Phenomena. John Wiley & Sons, Ltd, pp. 159–190.
    Rein, G., 2016. Smoldering Combustion, in: Hurley, M.J., Gottuk, D., Hall, J.R., Harada, K., Kuligowski, E., Puchovsky, M., Torero, J., Watts, J.M., Wieczorek, C. (Eds.), SFPE Handbook of Fire Protection Engineering. Springer New York, New York, NY, pp. 581–603.
    Richter, F., Jervis, F.X., Huang, X., Rein, G., 2021. Effect of oxygen on the burning rate of wood. Combust. Flame 234, 111591.
    Roenner, N., Rein, G., 2019. Convective ignition of polymers: New apparatus and application to a thermoplastic polymer. Proc. Combust. Inst. 37, 4193–4200.
    Rokni, E., Ren, X., Panahi, A., Levendis, Y.A., 2018. Emissions of SO2, NOx, CO2, and HCl from Co-firing of coals with raw and torrefied biomass fuels. Fuel 211, 363–374.
    Rubin, E.S., Mantripragada, H., Marks, A., Versteeg, P., Kitchin, J., 2012. The outlook for improved carbon capture technology. Prog. Energy Combust. Sci. 38, 630–671.
    Ruscic, B., 2020. Active Thermochemical Tables.
    Saeidi, S., Najari, S., Hessel, V., Wilson, K., Keil, F.J., Concepción, P., Suib, S.L., Rodrigues, A.E., 2021. Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Prog. Energy Combust. Sci. 85, 100905.
    Sagues, W.J., Jameel, H., Sanchez, D.L., Park, S., 2020. Prospects for bioenergy with carbon capture & storage (BECCS) in the United States pulp and paper industry. Energy Environ. Sci. 13, 2243–2261.
    Saidur, R., Abdelaziz, E.A., Demirbas, A., Hossain, M.S., Mekhilef, S., 2011. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 15, 2262–2289.
    Santoso, M.A., Christensen, E.G., Yang, J., Rein, G., 2019. Review of the Transition From Smouldering to Flaming Combustion in Wildfires. Front. Mech. Eng. 5.
    Schneider, T., Ruf, F., Müller, D., Karl, J., 2021. Performance of a fluidized bed-fired Stirling engine as micro-scale combined heat and power system on wood pellets. Appl. Therm. Eng. 189, 116712.
    Seepana, S., Jayanti, S., 2010. Steam-moderated oxy-fuel combustion. Energy Convers. Manag. 51, 1981–1988.
    Sher, F., Pans, M.A., Sun, C., Snape, C., Liu, H., 2018. Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor. Fuel 215, 778–786.
    Shi, L., Chew, M.Y.L., 2013. A review of fire processes modeling of combustible materials under external heat flux. Fuel 106, 30–50.
    Singh, R.I., Kumar, R., 2016. Current status and experimental investigation of oxy-fired fluidized bed. Renew. Sustain. Energy Rev. 61, 398–420.
    Song, Z., Wang, B., Yang, W., Chen, T., Ma, C., Sun, L., 2020. Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2.5M0.5O4 (M = Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chem. Eng. J. 386, 123883.
    Stančin, H., Mikulčić, H., Wang, X., Duić, N., 2020. A review on alternative fuels in future energy system. Renew. Sustain. Energy Rev. 128.
    States, U., Energy, A.C., Act, S., 2018. Definition of Biomass. Biomass Gasification, Pyrolysis and Torrefaction 497–499.
    Toftegaard, M.B., Brix, J., Jensen, P.A., Glarborg, P., Jensen, A.D., 2010. Oxy-fuel combustion of solid fuels. Prog. Energy Combust. Sci. 36, 581–625.
    Tollefson, J., 2018. Zero-emissions plant begins key tests. Nature 622–623.
    Torero, J., 2016. Flaming Ignition of Solid Fuels, in: Hurley, M.J., Gottuk, D., Hall, J.R., Harada, K., Kuligowski, E., Puchovsky, M., Torero, J., Watts, J.M., Wieczorek, C. (Eds.), SFPE Handbook of Fire Protection Engineering. Springer New York, New York, NY, pp. 633–661.
    Torero, J.L., Gerhard, J.I., Martins, M.F., Zanoni, M.A.B., Rashwan, T.L., Brown, J.K., 2020. Processes defining smouldering combustion: Integrated review and synthesis. Prog. Energy Combust. Sci. 81.
    Ul Hai, I., Sher, F., Yaqoob, A., Liu, H., 2019. Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier. Fuel 258, 116143.
    Uzoejinwa, B.B., He, X., Wang, S., El-Fatah Abomohra, A., Hu, Y., Wang, Q., 2018. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 163, 468–492.
    Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W.I.F., Bowen, P.J., 2018. Ammonia for power. Prog. Energy Combust. Sci. 69, 63–102.
    Wang, C.S., Berry, G.F., Chang, K.C., Wolsky, A.M., 1988. Combustion of pulverized coal using waste carbon dioxide and oxygen. Combust. Flame 72, 301–310.
    Wang, S., Zou, C., Lou, C., Yang, H., Mei, M., Jing, H., Cheng, S., 2020. Effects of hemicellulose , cellulose and lignin on the ignition behaviors of biomass in a drop tube furnace. Bioresour. Technol. 310, 123456.
    Wang, X., Adeosun, A., Hu, Z., Xiao, Z., Khatri, D., Li, T., Tan, H., Axelbaum, R.L., 2019. Effect of feedstock water leaching on ignition and PM1.0 emission during biomass combustion in a flat-flame burner reactor. Proc. Combust. Inst. 37, 2705–2713.
    Wang, Z., Herbinet, O., Hansen, N., Battin-Leclerc, F., 2019. Exploring hydroperoxides in combustion: History, recent advances and perspectives. Prog. Energy Combust. Sci. 73, 132–181.
    Witkowski, A., Stec, A.A., Hull, T.R., 2016. Thermal Decomposition of Polymeric Materials, in: Hurley, M.J., Gottuk, D., Hall, J.R., Harada, K., Kuligowski, E., Puchovsky, M., Torero, J., Watts, J.M., Wieczorek, C. (Eds.), SFPE Handbook of Fire Protection Engineering. Springer New York, New York, NY, pp. 167–254.
    Wu, F.H., Chen, G.B., 2020. Numerical study of hydrogen peroxide enhancement of ammonia premixed flames. Energy 209, 118118.
    Yang, C., Kim, Y., Bang, B., Jeong, S., Moon, J., Mun, T.Y., Jo, S., Lee, J., Lee, U., 2020. Oxy-CFB combustion technology for use in power-generation applications. Fuel 267, 117206.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., 2007. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788.
    Yang, J., Liu, N., Chen, H., Gao, W., 2019. Smoldering and spontaneous transition to flaming over horizontal cellulosic insulation. Proc. Combust. Inst. 37, 4073–4081.
    Yang, Z., Wu, Y., Zhang, Z., Li, H., Li, X., Egorov, R.I., Strizhak, P.A., Gao, X., 2019. Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects. Renew. Sustain. Energy Rev. 103, 384–398.
    Yin, C., Yan, J., 2016. Oxy-fuel combustion of pulverized fuels: Combustion fundamentals and modeling. Appl. Energy 162, 742–762.
    Yue, S., Wang, C., Huang, Y., Xu, Z., Xing, J., Anthony, E.J., 2022a. The role of H2O in structural nitrogen migration during coal devolatilization under oxy-steam combustion conditions. Fuel Process. Technol. 225, 107040.
    Yue, S., Wang, C., Xu, Z., Wang, D., Zheng, F., Anthony, E.J., 2022b. The role of H2O in NO formation and reduction during oxy-steam combustion of bituminous coal char. Combust. Flame 237, 111883.
    Zan, H., Chen, X., Ma, J., Liu, D., Wu, Y., 2020. Experimental Study of NO xFormation in a High-Steam Atmosphere during a Pressurized Oxygen-Fuel Combustion Process. ACS Omega 5, 16037–16044.
    Zhai, J., Burke, I.T., Stewart, D.I., 2021. Beneficial management of biomass combustion ashes. Renew. Sustain. Energy Rev. 151, 111555.
    Zhang, L., Wu, D., Cai, L., Zou, C., Qiu, J., Zheng, C., 2017. The chemical and physical effects of CO2 on the homogeneous and heterogeneous ignition of the coal particle in O2/CO2 atmospheres. Proc. Combust. Inst. 36, 2113–2121.
    Zhang, Y., Kang, L., Li, H., Huang, X., Liu, X., Guo, L., Huang, L., 2019. Characterization of moxa floss combustion by TG/DSC, TG-FTIR and IR. Bioresour. Technol. 288.
    Zhang, Z., Lu, B., Zhao, Z., Zhang, L., Chen, Y., Li, S., Luo, C., 2020. CFD modeling on char surface reaction behavior of pulverized coal MILD-oxy combustion: Effects of oxygen and steam. Fuel Process. Technol. 204, 106405.
    Zheng, C., Su, M., Zhao, H., 2021. Identifying the contribution of rich-CO2/H2O gasification on the char conversion in typical atmospheres of chemical looping with oxygen uncoupling via single particle simulation. Combust. Flame 229, 111397.
    Zhou, C.W., Li, Y., Burke, U., Banyon, C., Somers, K.P., Ding, S., Khan, S., Hargis, J.W., Sikes, T., Mathieu, O., Petersen, E.L., AlAbbad, M., Farooq, A., Pan, Y., Zhang, Y., Huang, Z., Lopez, J., Loparo, Z., Vasu, S.S., Curran, H.J., 2018. An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: Ignition delay time and laminar flame speed measurements. Combust. Flame 197, 423–438.
    Zhou, H., Li, Y., Li, N., Cen, K., 2019. Experimental investigation of ignition and combustion characteristics of single coal and biomass particles in O2/N2 and O2/H2O. J. Energy Inst. 92, 502–511.

    無法下載圖示 校內:2025-01-25公開
    校外:2027-01-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE