| 研究生: |
李琪 Li, Chi |
|---|---|
| 論文名稱: |
水滑石/聚醯亞胺奈米複合材料之表面特性分析 Surface Analysis of the Layered Double Hydroxide/Polyimide Nanocomposites |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 水滑石 、聚醯亞胺 、奈米複合材料 、接觸角 、表面特性分析 |
| 外文關鍵詞: | surface property, contact angle, LDHs, nanocomposites, polyimide |
| 相關次數: | 點閱:156 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以層間插入法將具有對苯胺酸分子插層之有機水滑石(LDH-AB)與聚醯亞胺高分子(polyimide)製備具相容性的脫層型之水滑石/聚醯亞胺奈米複合材料(LDH-AB/PI)。對苯胺酸以離子鍵結接枝於水滑石層板,可將原本親水的無機層板改質為疏水的層板,同時使水滑石層板的層間距增加。讓製備水滑石/聚醯亞胺奈米複合材料的過程中,有機單體或有機溶劑容易擴散或滲透至水滑石層板間,進而在層間聚合。此外,對苯胺酸帶有胺基官能基,可和聚醯亞胺產生化學鍵結,形成無機相與有機相之間的橋樑,可增進兩相之相容性。
我們利用紅外線光譜儀(FTIR)觀察改質前後水滑石的特徵官能基、X-ray繞射儀(XRD)和穿透式電子顯微鏡(TEM)觀察水滑石層板的層間距的變化。並且由熱重分析儀(TGA)發現當聚醯亞胺內含有9 wt%對苯胺酸插層的有機水滑石,其複合材料的熱裂解溫度會比純聚醯亞胺提高33 °C(5 wt% weight loss);但是若將聚醯亞胺內添加4 wt%未改質的碳酸根插層水滑石,其複合材料的熱裂解溫度會因水滑石層板的聚集而下降14 °C(5 wt% weight loss)。
此外,本研究將對水滑石/聚醯亞胺奈米複合材料的表面特性做進一步的分析。由靜態接觸角儀的結果得到在接觸空氣的界面:添加對苯胺酸插層的有機水滑石與聚醯亞胺形成的複合材料,其接觸角角度比純聚醯亞胺高分子增加約20°以上,且添加物的多寡幾乎不影響角度的大小;而在接觸基材的界面:其接觸角角度則與純聚醯亞胺高分子差不多。
為了探討出現差異的原因,本實驗增加兩組對照組以幫助我們了解影響表面親疏水性的原因,分別是添加未改質的水滑石與聚醯亞胺形成複合材料(LDH/PI)與添加改質劑對苯氨酸與聚醯亞胺形成混合材料(ABA/PI)。並配合減弱式全反射式紅外線光譜分析(ATR-FTIR)和高解析電子能譜儀(XPS)等表面元素分析的儀器,以及由掃描式電子顯微鏡(SEM)分析材料的表面型態。從材料的化學組成以及物理結構,推斷水滑石/聚醯亞胺奈米複合材料與聚醯亞胺高分子的表面特性。
由儀器分析的實驗結果可以發現複合材料表面的碳、氧、氮化學環境與聚醯亞胺高分子幾乎相同,不過添加無機材料之後的複合材料其接觸空氣的界面比純聚醯亞胺高分子粗糙,會在表面多出許多的突起物,所以使得接觸角的角度增加,整體材料具有較疏水的表面特性;而在接觸基材的界面則與純聚醯亞胺有相似的表面型態,故對接觸角角度的大小幾乎沒有影響,與純聚醯亞胺的親疏水程度相當。
In this study, amino benzoic acid intercalated LDHs (LDHs-AB) andpolyimide (PI) were prepared by intercalation method to get the compatible and exfoliated LDHs/polyimide nanocomposites. The amino benzoic acid (ABA)grafted on the LDHs nanolayer through ionic bond converts the hydrophilic LDHs into the hydrophobic LDHs and increases the d-spacing of the LDHs atthe same time. This organo-modified process allows the organic monomers or solvents to diffuse or penetrate into the LDHs galleries, leading to the completion of the polymerization. Furthermore, the amino group from the intercalated amino benzoic acid can react with polyimide to generate the strong chemical bond, resulting in the enhancement on the compatibility between the inorganic LDHs and organic polyimide.
The dispersion behavior of Mg/Al nanolayers was investigated by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The fourier-transform infrared (FTIR) indicated that the amino benzoate was intercalated into the LDHs and thermal gravimetric analysis (TGA) was performed to demonstrate the thermal stability of the composites. With the 9 wt% LDHs-AB loading, the decomposition temperature of the LDH-AB/polyimide is 33°C (5wt% weight loss) higher than that of pristine polyimide. But with the 4 wt% unmodified LDHs loading, the decomposition temperature of the LDH/polyimide is 14°C (5wt% weight loss) lower than that of pristine polyimide.
With the successful preparation of LDH-AB/PI nanocomposites, various surface analysis techniques were performed to explore the distinctive surface properties of these nanocomposites which are rarely studied. The static contact angle method (CA) shows the increase of the contact angle from the air-side of the LDH-AB/PI nanoncomposite films to the pristine polyimide is higher than 20°. In addition, the influence of the amounts of the LDH-AB on contact angle values is little. In contrast, the contact angle values on the substrate-side of the LDH-AB/PI nanoncomposite films and pristine polyimide are almost the same.
We introduce the LDH/PI composite and ABA/PI hybrid and also employ a lot of surface analytical techniques to help us find out the reasons for this difference. By the way, we can acquire the information about the surface properties of these films. The surface image and morphology of the films were characterized by using scanning electron microscope (SEM), and the surface chemical binding environment and functionalities were by attenuated total reflection fourier transformed infrared spectroscopy (ATR-FTIR) and x-ray photoelectron spectroscopy (XPS).
The XPS analysis and FTIR results indicated the surface chemical binding environment of these nanocomposites is similar to the pristine polyimide. SEM micrographs demonstrated that the surface roughness on the air-side of the films increases with the LDH-AB and LDH content in the composite films while that on the substrate-side is almost unchanged. Therefore, we conclude that the increasing surface roughness results in the more hydrophobicity in the LDH-AB/polyimide nanocomposites prepared in this study.
1. 薛懷斌,以反應型水滑石層狀材料製備水滑石/高分子奈米複合材料與其性質之研究,成功大學化工所博士論文,2003
2. 華中一、羅維昂,表面分析,上海復旦大學出版,新華發行,1989
3. Vickerman, J.C. Surface Analysis-The Principle Techniques; John Wiley & Sons, 2003
4. Andrade, J.D. Surface and Interfacial Aspects of Biomedical Polymers; Plenum Press,1985
5. Prosycevas, I.; Tamulevicius, S.; Guobienea, A. Thin Solid Films 2004, 453, 304.
6. Kim, Y.; Lee, W. K.; Cho, W. J.; Ha, C.S. Polymer International 1997, 43, 129
7. Yu, Z.; Zhang, Z.; Yuan, Q.; Yinga, S. Advances in Polymer Technology 2002, 21, 268
8. Song, M.; Xia, H.S.; Yao, K.J.; Hourston, D.J. European Polymer Journal 2005, 41, 259
9. 林鴻明,科技發展政策報導SR9109,2002,648~659 頁
10. 林唯芳,有機無機奈米材料,塑膠資訊,2001,60 期,4 頁
11. 李世陽,「奈米高分子複合材料」新市場應用機會,化工資訊,2001 年5 月,15 頁
12. 廖建勛,「奈米高分子複合材料」發展現況與未來趨勢,化工資訊,2001 年5 月,20 頁
13. Ogawa, M.; Kuroda, K. Chemical Reviews 1995, 95, 399
14. Leroux, F.; Besse, J.-P. Chemistry of Materials 2001, 13, 3507
15. Wahab, M. A.; Kim, Il.; Ha, C.-S. Polymer 2003, 44, 4705
16. Chang, C.-C.; Chen, W.-C. Chemistry of Materials 2002, 14, 4242
17. Yano, S.; Iwata, K.; Kurita, K. Materials Science and Engineering: C 1998, 6, 75
18. Wilson Jr, O.C.; Olorunyolemi, T.; Jaworski, A.; Borum, L.; Young, D.; Siriwat, A.;Dickens, E.; et. al. Applied Clay Science 1999, 15, 265
19. Yang, Q. Z.; Sun, D. J.; Zhang, C. G.; Wang, X. J.; Zhao, W. A. Langmuir 2003, 19, 5570
20. 陳坤玉,聚醯亞胺/二氧化矽奈米複合材料之製備與性質研究,中原大學化研所碩士論文,2002
21. 樂文禮,聚醯亞胺奈米矽氧複合材料選擇性封裝之研究,成功大學化工所碩士論文,2002
22. 馬振基,聚醯亞胺樹脂之合成特性與應用,塑膠資訊,1997,12 期,14 頁
23. 薛懷斌,可溶性聚醯亞胺之合成與應用,成功大學化工所碩士論文,1999
24. Wilson, D.; Stenzenberger, H.D.; Hergenrother, P.M. Polyimides, Chapman and Hall,1990
25. Reichle, W. T. Solid State Ionics 1986, 22, 135
26. Rives, V. Materials Chemistry and Physics 2002, 75, 19
27. Itoh, T.; Ohta, N.; Shichi, T.; Yui, T.; Takagi, K. Langmuir 2003, 19, 9120
28. Roussel, H.; Briois, V.; Elkaim, E.; de Roy, A.; Besse, J. P. Journal of Physical Chemistry
B 2000, 104, 5915
29. Vaccari, A. Catalysis Today 1998, 41, 53
30. Zhao, Y.; Li, F.; Zhang, R.; Evans, D. G.; Duan, X. Chemistry of Materials 2002, 14, 4286
31. Aisawa, S.; Takahashi, S.; Ogasawara, W.; Umetsu, Y.; Narita, E. Journal of Solid State
Chemistry 2001, 162, 52
32. Meyn, M.; Beneke, K.; Lagaly, G. Inorganic Chemistry 1990, 29, 5201
33. del Arco, M.; Carriazo, D.; Gutierrez, S.; Martin, C.; Rives, V. Inorganic Chemistry 2004,
43, 375
34. 蔡宗燕,工業材料,1997 年,125 期,120 頁
35. 廖建勛,奈米無機層狀材料之發展與應用,化工技術,2003 年,11 卷第3 期,168頁
36. Kanezaki, E. Materials Research Bulletin 1999, 34, 1435
37. Iyi, N.; Kurashima, K.; Fujita, T. Chemistry of Materials 2002, 14, 583
38. Kooli, F.; Chisem, I. C.; Vucelic, M.; Jones, W. Chemistry of Materials 1996, 8, 1969
39. Carlino, S.; Hudson, M. J. Journal of Materials Chemistry 1994, 4, 99
40. 黃文旗,以奈米插層型水滑石催化丙酸與丁醇之酯化反應的研究,成功大學化工所碩士論文,2003
41. Okada, A.; Usuki, A. Materials Science and Engineering: C 1995, 3, 109
42. Alexandre, M.; Dubois, P. Materials Science and Engineering: R 2000 , 28, 1
43. Pinnavaia, T. J.; Beall, G. W. Polymer-Clay Nanocomposites, John Wiley & Sons: New York, 2000
44. Jiang, L.-Y.; Wei, K.-H. Journal of Applied Physics 2002, 92,6219
45. Yano, K. A.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31, 2493
46. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chemistry of Materials 1994, 6, 573
47. Yano, K. A.; Usuki, A.; Okada, A. Journal of Polymer Science Part A: Polymer Chemistry 1997, 35, 2289
48. Yang, Y.; Zhu, Z.-K.; Yin, J.; Wang, X.-Y.; Qi, Z.-E. Polymer 1999, 40, 4407
49. Huang, J.-C.; Zhu, Z.-K.; Ma, X.-D.; Qian, X.-F.; Yin, J. Journal of Materials Science 2001, 36, 871
50. Tyan, H.-L.; Liu, Y.-C.; Wei, K.-H. Chemistry of Materials 1999, 11, 1942
51. Tyan, H.-L.; Leu, C. M.; Wei, K.-H. Chemistry of Materials 2001, 13, 222
52. Agag, T.; Koga, T.; Takeichi, T. Polymer 2001, 42, 3399
53. Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Johnston, N. J.; Smith Jr, J. G.; Connell, J.W. Polymer 2002, 43, 813
54. Leu, C.-M.; Wu, Z.-W.; Wei, K.-H. Chemistry of Materials 2002, 14, 3016
55. Magaraphan, R.; Lilayuthalert, W.; Sirivat, A.; Schwank, J. W. Composites Science and Technology 2001, 61, 1253
56. 余君臨,聚醯亞胺/黏土奈米複合材料之物理化學性質與微結構分析,中山大學材料所碩士論文,2001
57. Tyan, H.-L.; Liu, Y.-C.; Wei, K.-H. Polymer 1999, 40, 4877
58. 張岱融,聚甲基丙烯酸甲酯/水滑石奈米複合材料之合成與物性,成功大學碩士論文,2002
59. Hsueh, H.-B.; Chen, C.-Y. Polymer 2003, 44, 1151
60. Drezdzon, M. A. Inorganic Chemistry 1988, 27, 4628
61. Weber, W. D.; Gupta, M. R. Recent Advances in Polyimide Science and Technology, Society of Plastics Engineers, Inc., Poughkeepsie, New York, 1987
62. Bessonov, M. L.; Koton, M. M.; Kudryavtsev, V. V.; Laius, L. A. Polyimides: Thermally Stable Polymers, New York: Consultanta Bureau. 1987, p. 57-75
63. Du, J.; Zhu, J.; Wilkie, C. A.; Wang, J. Polymer Degradation and Stability 2002, 77, 377
64. Gilman, J. W. Applied Clay Science 1999, 15, 31
95
65. Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers :The Scienta ESCA300 Database, John Wiley & Sons, 1992, p.214~215
66. Wang, P.-S.; Wittberg, T. N.; Wolf, J. D. Journal of Materials Science 1998, 23, 3987
67. Bubniak, G. A.; Schreiner, W. H.; Mattoso, N.; Wypych, F. Langmuir 2002; 18,5967
68. Barthlott W.; Neinhuis C. Planta 1997, 202,1