| 研究生: |
劉鎧銘 Liu, Kai-Ming |
|---|---|
| 論文名稱: |
嘉義地區揮發性有機物來源及其臭氧生成潛勢 The Sources of Volatile Organic Compounds and Ozone Formation Potential in ChiaYi |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 236 |
| 中文關鍵詞: | 臭氧 、化學質量平衡受體模式 、揮發性有機物 、最大增量反應性 、雲嘉南空品區 |
| 外文關鍵詞: | Ozone, Yun-Chia-Nan air basin, Volatile organic compounds (VOCs), Maximum incremental reactivity (MIR), Chemical mass balance (CMB) |
| 相關次數: | 點閱:127 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來雲嘉南空品區空氣品質不良率以臭氧為指標污染物之比例由1994年12%至2005年增加為53.6%,顯示臭氧於雲嘉南地區已逐漸取代懸浮微粒成為主要之指標污染物,且僅次於高屏空品區為第二污染嚴重之空品區。本研究使用環保署雲嘉光化測站(PAMS)之2007年6月至2008年12月連續監測資料,以年平均濃度、最大反應增量 (Maximum incremental reactivity, MIR)及丙烯當量濃度(Propylene-equivalent)三種指標探討主要VOCs物種排序,利用化學質量平衡受體模式(Chemical mass balance, CMB8.2)來推估臭氧事件日與非事件日時污染源對受體點VOCs之貢獻量,並以MIR理論瞭解不同污染源貢獻比例及臭氧光化反應潛勢值及生成潛勢,同時配合實場觀測採樣結果,由光化指標界定於不同污染物控制下,以MIR理論探討不同光化指標之臭氧生成潛勢。
研究結果顯示光化測站中各VOCs以濃度而言,朴子站及台西站主要貢獻為烷類,其次為芳香烴類。以MIR及Prop-equiv而言,朴子站主要貢獻為芳香烴類(53%),其次為烯類(26%),台西站則是以芳香烴類與烯類兩者為主要貢獻。以VOCs年平均濃度進行排序而言,朴子地區與台西地區排名首要物種為Toluene;以MIR排序而言朴子地區首要物種為Toluene,其次為m,p-Xylene,台西地區為Ethylene,其次為Propylene;以丙烯當量濃度排序結果,朴子地區首要為m,p-Xylene,其次為Isoprene,台西地區首要物種為Propylene,其次為Toluene,但於朴子地區與台西地區主要前十名物種有Isopentane、Ethylene、Propylene、Isoprene、1-Butene、cis-2-Butene、1,2,4-trimethylbenzene、Toluene、m,p-Xylene、o-Xylene。而這些VOCs物種與六輕離島工業區之廢氣燃燒塔流量比較而言,朴子地區顯示與流量較不相關,然而台西地區Ethylene及Propylene顯示在任何流量下日間都有高濃度值,Isoprene物種濃度出現之時間反而於清晨夜間時段出現。
本研究CMB受體模式分析中,選擇半生期大於12小時之物種以及不確定比例25%下進行模擬,臭氧事件日時段各污染源貢獻比例移動源(汽機車廢氣、油氣揮發)為48%,石油煉製業34.4%,溶劑使用(工業溶劑塗裝、印刷業與汽車保養維修業)為12.7%,塑膠製品製造業為3.9%,生物源1.6%;非事件日中移動源(汽機車廢氣、油氣揮發)為51.2%,石油煉製業24.4%,溶劑使用(工業溶劑塗裝、印刷業與汽車保養維修業)為18.6%,塑膠製品製造業為4.6%,生物源1.2%;以Mann-Whitney- Wilcbxon方法進行檢定結果顯示,以二行程機車廢氣、油氣揮發、石油煉製業與溶劑使用污染源有顯著差異,其中事件日比例高於非事件日為石油煉製業與油氣揮發於2007年差異比例分別為8.5%與3.7%,2008年分別為7.4%與2.1%。
不同污染源以臭氧生成潛勢結果分析結果,於臭氧事件日中移動源(汽機車廢氣、油氣揮發)貢獻比例為46.8%,石油煉製業28.2%,溶劑使用(工業溶劑塗裝、印刷業與汽車保養維修業)為16%,塑膠製品製造業為2.6%,生物源6.4%;非事件日中移動源(汽機車廢氣、油氣揮發)貢獻比例為54.2%,石油煉製業22%,溶劑使用(工業溶劑塗裝、印刷業與汽車保養維修業)為17.6%,塑膠製品製造業為2.4%,生物源3.7%。以Mann-Whitney- Wilcbxon方法進行檢定結果顯示石油煉製業污染源於事件日貢獻比例高於非事件日時段達14%。各污染源臭氧光化反應潛勢值(ppb -O3/ppb-VOCs),以生物源4.67(ppb -O3/ppb-VOCs)最高,同時在事件日與非事件日中除石油煉製業外,其餘污染源至少1(ppb -O3/ppb-VOCs)以上;在事件日中,則可以發現石油煉製業污染源於事件日中其光化反應潛勢值(0.94ppb -O3/ppb-VOCs)高於非事件日(0.56~0.61 ppb -O3/ppb-VOCs)。
According to the monitoring data, the major air pollutant responsible for PSI above 100 was O3 in Yun-Chia-Nan air basin. In this study, the VOCs characteristics in Chiayi were evaluated by means of three indices: annual average mass concentrations, maximum incremental reactivity (MIR) and propylene-equivalent concentrations. The contributions of the volatile organic compounds during ozone and non-ozone episodes from various emission sources were estimated by chemical mass balance receptor model (CMB8.2). Finally, MIR was used to evaluate ozone formation potential by various emission sources.
For mass concentrations, alkane was the major contributor and main compound was toluene at Puzih and Taisi. For MIR and Prop-equiv, aromatics and alkenes account for 53% and 26% at Puzih and 40% at Taisi. Toluene and m,p-Xylene were found to have the highest ozone formation potential (OFP) and OH-reactivity at Puzih and ethylene and propylene at Taisi. Compared with flare flows in industrial park, there have no trend at Puzih. On the contrary, alkenes usually have high concentrations in the noontime at Taisi.
The receptor model estimated the mobile source (48%) was the largest source of VOCs during ozone episodes, followed by the petroleum refinery (34.4%), solvent use (12.7%), plastic manufacturers (3.9%) and biological emission (1.6%). During non-ozone epiodes, the mobile source (51.2%) was also the largest source of VOCs, followed by the petroleum refinery (24.4%), solvent use (18.6%), plastic manufacturers (4.6%) and biological emission (1.2%). The paired-sample nonparamentric statistics is applied to individual sources for evaluating differences between ozone and non-ozone episodes. A significant difference was found for the petroleum refinery and gasoline evaporation, amounting 8.5% and 2.7% in 2007, 7.4% and 2.1% in 2008, respectively.
The mobile source (46.8%) was the largest contributors to OFPs, followed by the petroleum refinery (28.3%), solvent use (16%), plastic manufacturers (2.6%) and biological emission (6.4%) during episodes. However, the OFPs of contribution percentages during non-ozone episodes were mobile source (54.2%), petroleum refinery (22%), solvent use (17.6%), plastic manufacturers (2.4%) and biological emission (3.7%) during non-ozone episodes. The paired-sample nonparamentric statistics test shows petroleum refinery had a significant difference and the largest difference in percentage between ozones and non-ozone episodes is 14%. The highest average ozone increment among the various sources is biological emission (4.67ppb -O3/ppb-VOCs). The effect of petroleum refinery was different between ozone (0.94ppb -O3/ppb-VOCs) and non-ozone episodes (0.56~0.61ppb -O3/ppb -VOCs).
Acker, K., Wieprecht, W., Auel, R., Kalass, D. and Moller, D., “Evidence for heterogeneous formation of nitrous acid on cloud droplets.” J. Aerosol Science, 31, Supp1. 1, p. S352-S353, 2000.
Ammann, M., Kalberer, M., Jost, D.T., Tobler, L., Rossler, E., Piguet, D., Gaggeler, H.W. and Baltensperger, U.,” Heterogeneous production of nitrous acid on soot in polluted air masses.” Nature, 395, 157, 1998.
Arens, F., Ammann, M., Gutzwiller, L., Baltensperger, U. and Gaggeler, H.W.,”Formation of HONO from the reaction of NO2 with diesel soot.” J. Aerosol Science, 31, Supp1.1, p. S1035, 2000.
Atkinson, R.”Gas-Phase tropospheric chemistry of organic compounds: a review.” Atmospheric Environment, 41,S200-S240, 2007.
Carter, W.P.L.” Development of Ozone reactivity scales for volatile organic compounds”, J. Air& Waste Manage. Assoc, 44, 881-899, 1994.
Copper, J.A. and Watson, J. G., “Receptor-Oriented Methods of Air Particulate Source Apportionment,” J. Air Pollut. Control Assoc., 30, 1116-1125, 1980.
Derwent, R.G. and Jenkin, M.E.” Hydrocarbons and the long range transport of ozone and pan across Europe”, Atmospheric Environment, 25, 1661-1678, 1991.
Derwent, R.G.” Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions”, Atmospheric Environment, 30, 181-199, 1996.
Dimitriades, B.” Scientific basis for the VOCs reactivity issues raised by section 182 of the clean air amendments of 1990”, J. Air& Waste Manage. Assoc6, 46, 963-970, 199.
Fujita, E.M., J.G. Watson, J.C. Chow and Z.Lu. “Validation of the chemical mass balance receptor model applied to hydrocarbon source apportionment in the Southern California Air Quality Study.” Environ. Sci. Technol., 28, 1633-1649, 1994.
Guenther, A., Monson, R.K., Fall, R.,” Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development. Journal of Geophysical Research, 96, 10799-10808, 1991.
He, C., Murray, F., Lyons, T., “ Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia”, Atmospheric Environment, 34, 645-655, 2000a.
Henry Wohrnschimmel, Claudia Marquez, Violeta Mugica, Werner A. Stahel, Johannes Staehelin, Beatriz Cardenas, Salvador Blanco, “ Vertical profiles and receptor modeling of volatile organic compounds over Southeastern Mexico City,” Atmospheric Environment, 40, 5152-5136, 2006.
Katsoulis, B. D.” The Relationship between Synoptic, Mesoscale and Microscale Meteorological Parameters during Poor Air Quality Events in Athens, Greece”. The Science of Total Environment, 18,113-24, 1996.
Ken Sexton and Hal Westberg.”Ambient Hydrocarbon and Ozone Measurements Downwind of a Large Automotive Painting Plant”. Environmental Science and Technology0, 14, 329-332, 198.
Kelly, T.J.” Air Pollution Monitoring and Health Risk Assessment in Allen Country-Lima, Ohio” 85th Annual Meeting and Exhibition of Air and Waste Management Association, Kansas City, Missouri, USA, June 1992.
Kurtenbach, R., Becker, K.H., Gomes, J.A.G., Kleffmann, J., Lorzer, J.C., Spittler, M., Wiesen, P., Acrermann, R., Geyer, A., Platt. U.,” Investigation of emissions and heterogeneous formation of HONO in a road traffic tunnel.” Atmospheric Environment, 35, 3385-3394, 1998.
Kwangsam Na, Yong Pyo Kim, Ιl Moon, Kil-Choo Moon. “Chemical composition of major VOC emission sources in the Seoul atmosphere”. Chemosphere, 55, 585-594, 2004.
Kwangsam Na, Yong Pyo Kim , Kil Choo Moon. “Seasonal variation of the C2-C9 hydrocrbons concentrations and compositions emitted from motor vehicles in a Seoul tunnel”. Atmospheric Environment, 36, 1969-1978, 2002.
Kwangsam Na and Yong Pyo Kim, “Seasonal characteristics of ambient volatile organic compounds in Seoul, Koreal”. Atmospheric Environment, 35, 2603-2614, 2001.
Marciano Sanchez, Sarutha Karnae and Kuruvilla John.” Source Characterization of Volatile Organic Compounds Affecting the Air Quality in a Coastal Urban Area of South Texas”. International Jouanal of Environmental Research and Public Health, 5,130-138, 2008.
McLaren, R.M., Gertler, A.W., Wittorff, D.N., Belzer, W., Dann, T., Singleton, D.L., “Real-World Measurements of Exhaust and Evaporative emissions in the Cassiar Tunnel Predicted by Chemical Mass Balance Modeling”. Environmental Science and Technology, 30, 3001-3009, 1996.
National Research Council, ”Rethinking the Ozone Problem in Urban and Regional Air Pollution”, National Academy Press, Washington, Direct of Columbia, 1991.
Olga Hawas, Darry Hawker, Andrew Chan, David Cohen, Elizabeth Christensen, Gary Golding and Peter Vowles. “ Characterisation and Identification of Sources of Volatile Organic Compounds in an Industrial Area in Brisbane”. Clean Air Conf., Christchurch, New Zealand, p307-31, 18-22 Aug. 20023.
Rogak, S.N., Pott, U., Dann, T., Wang, D., “Gaseous Emissions from Vehicles in a Traffic Tunnel in Vancouver, British Columbia”. Journal of the Air and Waste Management Association, 48, 604-615, 1998.
Schauer J.J., Kleeman, M.J., Cass G.R., and Bernd Simoneit R.T.,” Measurement of Emissions from Air Pollution Sources. 2. C1 through C30 Organic Compounds from Medium Duty Diesel Trucks”, Environmental Science and Technology, 33, 1578-1587, 1999.
Scheff, P.A.,” Improvement of VOCs Source Fingerprints for Vehicles and Refineries”, 84th Annual Meeting and Exhibition of Air and Waste Management Association, Vancouver, B.C. Canada, 1991.
Scheff ,P.A., C.B. Keil, J. Graf-teterycz, J-Y. Jeng and R.A. Wadden. ” The Composition of Organic Emissions in Car and Diesel Bus Parking Facilities.” The Annual Meeting of American Industrial Hygiene Conference and Exhibition, 1992.
Seinfeld, J.H. and S. N. Pandis, “ Atmospheric chemistry and physics.” John Wiley&Sons, New York, 1998.
Sigsby, J.E., Tejada, S., Ray, W., Lang, J.M. ”Volatile organic compound emissions from 46 in-use passenger cars”. Environment Science and Technology, 21, 466-475, 1987.
Sillman S.,” The use of NOy, H2O2 and HNO3 as indicators for O3-NOx-ROG sensitivity in urban locations.” J. Geophys. Res., V100, 14175-14188, 1995.
So., K.L. and Wang T.,”C3-C12 non-methane hydrocarbons in subtropical Hong Kong: spatial-temporal variations, source-receptor relationships and photochemical reactivity”, Science of the Total Environment, 328, 161-174, 2004.
Steven G. Brown, Anna Frankel, Hilary R. Hafner,” Source appointment of VOCs in the Los Angles area using positive matrix factorization”, Atmospheric Environment, 41, 227-237, 2007.
Tomoko Shirai, Yoko Yokouchi, Donald r. Blake, Kazuyuki Kita, K. Izumi, M. Koike, Y. Komazaki, Y. Miyazaki, M. Fukuda and Y. Kondo.”Seasonal variations of atmospheric C2-C7 nonmethane hydrocarbons in Tokyo”. Journal of Geophysical Research, 112, D24305, doi:10.1029/2006JD008163, 2007.
Wadden, R.A.” Source discriminarion of short-term hydrocarbon samples measured alfot”. Environmental Science and Technology, 20, 473-483, 1986.
Wakamatsu, S., I. Uno, T. Ohara and K. L. Schere,.” A study of the relationship between photochemical ozone and its precursor emissions of nitrogen oxides and hydrocarbons in Tokyo and surrounding areas”. Atmospheric Environment,33,3097-3108, 1999.
Watson, J.G., Chow, J.C. and Fujita, E.M.,” Review of volatile organic compound source apportionment by chemical mass balance.” Atmospheric Environment, 35, 1567-1584, 2001.
Ying Liu, Min Shao, Linlin Fu, Sihua Lu, Limin Zeng, Dagang Tang.” Source profile of volatile organic compounds(VOCs) measured in China: Part Ι”. Atmospheric Environment, 42, 6247-6260, 2008.
路汝鋆,”石油化學工業”,徐氏基金會,1988。
顏月珠,”無母數統計方法”,陳昭明發行,1992。
楊思廉,”石油化學單元製造程序”,五洲出版社,1992。
蔣本基、江右君,”台北地區空氣中揮發性有機物特性與污染源分析”,第十屆空氣污染控制技術研討會論文,1993。
何國樑,”石化區廢水處理廠苯環揮發性有機物特性與排放量推估研究”,國立雲林科技大學碩士論文,1997。
謝祝欽、洪世皇、陳致平、陳宏苑、黃盟樹、吳義郎,”自然及人為揮發性有機物濃度特徵調查研究”,第十五屆空氣污染控制技術研討會,1998。
張能復等,”高屏地區大氣揮發性有機物成分特徵與臭氧生成潛勢關聯性研究”,第十五屆空氣污染控制技術研討會,1998。
林勇名,”氣中氣相H2O2量測方法及光化學反應機制之研究”,國立成功大學環境工程研究所碩士論文,1998。
翁閎政,”機車排氣之揮發性有機特徵及化反應性研究”,國立成功大學碩士論文,1998。
何文淵,”汽油車引擎廢氣揮發性有機物成分及光化反應性研究”,國立成功大學碩士論文,1999。
陳杜甫、張艮輝,”台灣地區生物源VOCs排放量之模式推估及其不確定性分析”,第十七屆空氣污染控制技術研討會,2000。
李清勝、俞家忠、王天胤,”導致台灣地區高污染之氣象分析與預報”,行政院環保署,2000。
林能暉,”北中南空品區O3與PM10污染之氣象條件研究”,行政院環保署/國科會空污防制科研計畫,2000。
許逸群,”臭氧高濃度區揮發性有機物特徵與排放源關聯性研究”,國立成功大學環境工程研究所博士論文,2000。
羅卓卿,”油品儲運站鄰近空氣中揮發性有機污染物之特性研究”,國立中山大學環境工程研究所碩士論文,2001。
吳立言,”高雄地區固定源揮發性有機物指紋及光化反應潛勢之探討”,國立中山大學環境工程研究所碩士論文,2002。
林沛練、賴信志,”高屏空品區空氣污染總量管制計劃-子計劃三:空氣污染氣象之模擬及其對空氣品質影響之分析”,行政院環保署/國科會空污防制科研計畫,2002。
張艮輝、林沛練、游智淵,”自然源揮發性有機物排放量之模式發展與推估”, 行政院環保署/國科會空污防制科研計畫,2002。
陳木麟,”運用CMB模式配合分析與調查探討都會區之碳氫化合物來源”,逢甲大學環境工程與科學學系碩士論文,2002。
謝俊雄,”石油化學工業”,新文京開發出版有限公司,2002。
薛周發,”加油站空氣中揮發性有機物之濃度分佈特性及其管制策略研究”,大葉大學環境工程研究所碩士論文,2004。
陳均衡、鄭翼彬,”大氣移動式揮發性有機物自動化連續監測技術應用與實例”,經濟部台灣環保產業雙月刊第24期,2004。
張寶額等,”九十四年度運用紅外光遙測技術執行石化工業區污染監測計畫”,行政院環保署,2005。
陳清涼,”空氣中VOC分析及其在石化廠的應用”,國立雲林科技大學工程科技研究所博士論文,2005。
許逸群,”中部雲嘉南空品區臭氧污染成因調查研究分析-固定源及面源VOC 排放推估及光化潛勢研究” ,行政院環保署/國科會空污防制科研計畫,2006。
周明顯,”拜香及爆竹產生空氣污染物之減量及危害評估-子計畫一:燃燒金紙及拜香產生空氣污染物 成分分析及排放量推估”,行政院環保署/國科會空污防制科研計畫,2006。
尤俊達、林金雀,”石化工業年鑑”,工研院產業經濟與資訊服務中心,p5-p10, 2006.
吳義林、林清和、賴進興、賴信志、林博雄、蔡德明,”高屏地區氣象與空氣品質三度空間觀測與分析”,行政院環保署,2007。
台灣曼寧工程,”雲林縣九十五年度離島工業區空氣污染監測、檢測許可查核與總量管制計畫”,雲林縣環保局,2007。
張寶額等,”九十五年度運用紅外光遙測技術執行石化工業區污染監測計畫”,行政院環保署,2007。
吳義林、林清和,”廢氣燃燒塔與鍋爐之揮發性有機物排放係數建置”, 行政院環保署/國科會空污防制科研計畫,2007。
林正仕,”石化工業區大氣垂直剖面VOCs之分佈特性”,輔英科技大學環境工程與科學系碩士論文,2007。
逢甲大學環境工程與科學學系,”96年度台中市懸浮微粒與碳氫化合物來源、成分與傳輸、貢獻量之調查與管制計畫”,臺中市環境保護局,2007。
中鼎工程,”中部及雲嘉南南空品區空氣品質改善推動與六輕離島工業區污染減量查核計畫”,行政院環保署,2008。
王家麟等,”九十六及九十七光化學評估監測站操作品保例行性計畫”,行政院環保署,2008。
新系公司,”嘉義縣九十七年空氣品質管理發展計畫”,嘉義縣環保局,2008。
行政院環保署,”空氣污染排放量推估首冊(TEDS6.1版)”。
校內:3008-07-27公開