| 研究生: |
田宥恩 Tien, Yu-En |
|---|---|
| 論文名稱: |
長效止痛劑型「納疼解」人體藥品動態學之研究 Pharmacokinetics of dinalbuphine sebacate in human after intramuscular injection of an extended-release formulation |
| 指導教授: |
黃金鼎
Huang, Jin-Ding |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床藥學與藥物科技研究所 Institute of Clinical Pharmacy and Pharmaceutical sciences |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 生體可用率 、前驅藥物 、緩釋劑型 、藥物動力學 |
| 外文關鍵詞: | nalbuphine, dinalbuphine sebacate, bioavailability, prodrug, HPLC-MS/MS, extended-release, pharmacokinetic |
| 相關次數: | 點閱:178 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nalbuphine是一種半合成鴉片類藥物,其適應症為緩解中度至重度疼痛。Nalbuphine的藥動半衰期很短,臨床上需要提高注射頻率來維持藥效,但此方式所造成的大範圍血液濃度差異卻提高藥物不良反應的發生率。 Dinalbuphine sebacate,為nalbuphine的前驅藥,其化學結構為兩個nalbuphine中間利用酯鍵連結形成一個dinalbuphine sebacate,是一種油性緩釋止痛注射劑。 由於代謝對藥物的功效和安全性有顯著的影響,我們使用人類肝臟微粒體來評估dinalbuphine sebacate的生物轉化,以確定其體外藥物代謝的情形。 酯解酶對於前驅藥的活化是必需的。 因此,我們分析了大鼠血液、肌肉和肝臟組織中的dinalbuphine sebacate水解率,以比較在不同組織中酯解酶對dinalbuphine sebacate的催化活性。 在之前dinalbuphine sebacate的試驗研究中,nalbuphine是唯一可測量到的代謝產物;而血漿中的dinalbuphine sebacate濃度則是低於最低偵測極限。 我們推測造成dinalbuphine sebacate濃度過低的可能原因有兩個,一是dinalbuphine sebacate之水解現象而另一個則是dinalbuphine sebacate的親脂性。 由於dinalbuphine sebacate相對疏水,其在血漿和紅血球之間的分配現象尚不清楚。 因此,我們執行了在人類全血中,nalbuphine與dinalbuphine sebacate對於血漿與紅血球的分配相關性研究,以求得nalbuphine與dinalbuphine sebacate在人類血液中的分配係數。 由於我們進行了一系列dinalbuphine sebacate的體外代謝研究,更加了解其體外代謝的概況。 基於這些體外代謝的研究結果,評估dinalbuphine sebacate油針劑型在人體內的生體可用率值得一試,並且可進一步探討dinalbuphine sebacate油針劑型是否比nalbuphine注射液在人體內能持續更長時間的血液nalbuphine有效濃度。
我們在健康受試者中進行了dinalbuphine sebacate生體可用率的臨床研究,以驗證此緩釋劑型能延長nalbuphine的血液濃度分佈。 此試驗在健康受試者分別進行肌肉內注射nalbuphine注射液和dinalbuphine sebacate油針劑型,之後比較此兩種劑型的藥物動力學差異。 十二名健康的台灣人隨機接受20毫克nalbuphine和150毫克的dinalbuphine sebacate,中間經過連續5天的沖洗期。 在樣品分析過程中,為了防止酯鍵水解,我們評估了四種酯解酶抑制劑在dinalbuphine sebacate定量實驗中的抑制效果。 研究結果為噻吩甲酰基三氟丙酮(TTFA)的抑制效果最佳,並將其應用於兩種驗證過的液相層析串聯式質譜分析方法,分別在人類全血中測定nalbuphine和dinalbuphine sebacate的濃度。 將分別注射nalbuphine注射液和dinalbuphine sebacate油針劑型後所測得的受試者血液中nalbuphine濃度相比,dinalbuphine sebacate油針劑型具有85.4 % 的生體可用率。 Dinalbuphine sebacate油針劑型的平均吸收時間為145.2小時。 Dinalbuphine sebacate油針劑型將nalbuphine完全釋放到血液中大約需要六天的時間,進入血液後,dinalbuphine sebacate因酯解酶作用迅速水解成nalbuphine。 本研究指出單次注射150毫克的dinalbuphine sebacate長效止痛劑型可以提供為期一週的疼痛緩解。
Nalbuphine is a semi-synthetic opioid indicated for the relief of moderate to severe pain. Its short half-life requires frequent injections in clinical practices, which results in greater incidences of adverse events due to a wide range of peak and trough blood concentrations. We have developed dinalbuphine sebacate (DNS), a synthetic prodrug with two active nalbuphine moieties joined with a sebacoyl ester, dissolved in a simple oil-based injectable formulation. Since drug metabolism has a significant effect on its efficacy and safety, we evaluate biotransformation of DNS using human liver microsomes to determine its in vitro drug metabolism. In general, enzymes are essential for prodrug activation. We analyzed DNS hydrolysis rate in rat blood, muscle and liver to compare catalytic activity of esterases on DNS, our ester-based prodrug, in different tissues. In the previous study, nalbuphine was the only measurable metabolic product while plasma concentrations of DNS were below the low quantitation limit. We speculated DNS hydrolysis issues and its lipophilicity as the possible reasons for lower plasma concentrations. Since DNS was relatively hydrophobic, its partition between plasma and red blood cells in whole blood was still unknown. Therefore, we conducted the partition coefficient study of nalbuphine and DNS in human whole blood to evaluate their partition between human plasma and red blood cells. To prevent DNS hydrolysis during sample analysis, we evaluated four esterase inhibitors in the quantitation of DNS. Because we performed a series of in vitro metabolism studies of DNS, we got more clear profiles. It is worthy to evaluate bioavailability of DNS in oil solution based on our in vitro hydrolysis results and to see if it could maintain effective blood nalbuphine level for longer duration in human than nalbuphine aqueous injection.
An open-label, prospective, two-period study was performed in healthy volunteers to verify the extended blood concentration profile of nalbuphine. Pharmacokinetics of intramuscularly administered DNS was compared with that of nalbuphine HCL injection in healthy volunteers. Twelve healthy Taiwanese were randomized to receive intramuscular injection of 20 mg nalbuphine HCL and 150 mg DNS sequentially with a washout period of 5 days. Thenoyltrifluoroacetone (TTFA) was chosen for two validated LC-MS/MS methods; quantifying nalbuphine and DNS in human whole blood, respectively. The bioavailability of nalbuphine from intramuscularly injected DNS relative to that from nalbuphine HCL was 85.4%. The mean absorption time of nalbuphine from DNS was 145.2 hr. It took approximately 6 days for complete release of DNS into blood stream where DNS was rapidly hydrolyzed to nalbuphine; suggesting a single injection of 150 mg DNS in our extended-release formulation could provide a week-long pain relief.
[1] J.G. Hardman, L.E. Limbird, A.G. Gilman, L.S.P.b.o.t. Goodman, Goodman & Gilman's the pharmacological basis of therapeutics, 10th ed. / editors, Joel G. Hardman, Lee E. Limbird / consulting editor, Alfred Goodman Gilman. ed., McGraw-Hill, New York ; London, 2001.
[2] D.R. Jasinski, P.A. Mansky, Evaluation of nalbuphine for abuse potential, Clin Pharmacol Ther, 13 (1972) 78-90.
[3] L.J. Cai, J. Zhang, X.M. Wang, R.H. Zhu, J. Yang, Q.Z. Zhang, W.X. Peng, Validated LC-MS/MS assay for the quantitative determination of nalbuphine in human plasma and its application to a pharmacokinetic study, Biomed Chromatogr, 25 (2011) 1308-1314.
[4] W.T. Beaver, G.A. Feise, A comparison of the analgesic effect of intramuscular nalbuphine and morphine in patients with postoperative pain, J Pharmacol Exp Ther, 204 (1978) 487-496.
[5] S.E. Cohen, E.F. Ratner, T.R. Kreitzman, J.H. Archer, L.R. Mignano, Nalbuphine Is Better Than Naloxone for Treatment of Side-Effects after Epidural Morphine, Anesthesia and Analgesia, 75 (1992) 747-752.
[6] R. Fournier, E. Van Gessel, M. Macksay, Z. Gamulin, Onset and offset of intrathecal morphine versus nalbuphine for postoperative pain relief after total hip replacement, Acta Anaesthesiol Scand, 44 (2000) 940-945.
[7] G. Lee, R.I. Low, E.A. Amsterdam, A.N. DeMaria, P.W. Huber, D.T. Mason, Hemodynamic effects of morphine and nalbuphine in acute myocardial infarction, Clin Pharmacol Ther, 29 (1981) 576-581.
[8] R.R. Miller, Evaluation of nalbuphine hydrochloride, Am J Hosp Pharm, 37 (1980) 942-949.
[9] F.N. Minai, F.A. Khan, A comparison of morphine and nalbuphine for intraoperative and postoperative analgesia, J Pak Med Assoc, 53 (2003) 391-396.
[10] A. Romagnoli, A.S. Keats, Comparative Hemodynamic Effects of Nalbuphine and Morphine in Patients with Coronary Artery Disease, Cardiovasc Dis, 5 (1978) 19-24.
[11] A.A. van den Berg, N.M. Honjol, N.V. Prabhu, S. Datta, C.J. Rozario, R. Muraleedaran, D. Savva, Analgesics and ENT surgery. A clinical comparison of the intraoperative, recovery and postoperative effects of buprenorphine, diclofenac, fentanyl, morphine, nalbuphine, pethidine and placebo given intravenously with induction of anaesthesia, Br J Clin Pharmacol, 38 (1994) 533-543.
[12] S. Akshat, R. Ramachandran, V. Rewari, Chandralekha, A. Trikha, R. Sinha, Morphine versus Nalbuphine for Open Gynaecological Surgery: A Randomized Controlled Double Blinded Trial, Pain Res Treat, 2014 (2014) 727952.
[13] P.J. Hoskin, G.W. Hanks, Opioid agonist-antagonist drugs in acute and chronic pain states, Drugs, 41 (1991) 326-344.
[14] W.K. Schmidt, S.W. Tam, G.S. Shotzberger, D.H. Smith, Jr., R. Clark, V.G. Vernier, Nalbuphine, Drug Alcohol Depend, 14 (1985) 339-362.
[15] Y.C. Yeh, T.F. Lin, F.S. Lin, Y.P. Wang, C.J. Lin, W.Z. Sun, Combination of opioid agonist and agonist-antagonist: patient-controlled analgesia requirement and adverse events among different-ratio morphine and nalbuphine admixtures for postoperative pain, Br J Anaesth, 101 (2008) 542-548.
[16] X. Culebras, G. Gaggero, J. Zatloukal, C. Kern, R.A. Marti, Advantages of intrathecal nalbuphine, compared with intrathecal morphine, after cesarean delivery: an evaluation of postoperative analgesia and adverse effects, Anesth Analg, 91 (2000) 601-605.
[17] M.W. Lo, F.H. Lee, W.L. Schary, C.C. Whitney, Jr., The pharmacokinetics of intravenous, intramuscular, and subcutaneous nalbuphine in healthy subjects, Eur J Clin Pharmacol, 33 (1987) 297-301.
[18] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin Pharmacol Ther, 83 (2008) 761-769.
[19] F.M. Williams, Clinical significance of esterases in man, Clin Pharmacokinet, 10 (1985) 392-403.
[20] F.J. Leinweber, Possible physiological roles of carboxylic ester hydrolases, Drug Metab Rev, 18 (1987) 379-439.
[21] O.Y.P. Hu, C.C. Chang, Analegisic (Sebacoyl dinalbuphine ester) PLGA controlled release formulation form, in, Google Patents, 2014.
[22] G.G. Gibson, P. Skett, Introduction to drug metabolism, Nelson Thornes, 2001.
[23] S. Rendic, F.J. Di Carlo, Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors, Drug Metab Rev, 29 (1997) 413-580.
[24] P. Glue, R.P. Clement, Cytochrome P450 enzymes and drug metabolism--basic concepts and methods of assessment, Cell Mol Neurobiol, 19 (1999) 309-323.
[25] I.A. De Graaf, C.E. Van Meijeren, F. Pektas, H.J. Koster, Comparison of in vitro preparations for semi-quantitative prediction of in vivo drug metabolism, Drug Metab Dispos, 30 (2002) 1129-1136.
[26] L.H. Pao, C.H. Hsiong, O.Y. Hu, J.J. Wang, S.T. Ho, In vitro and in vivo evaluation of the metabolism and pharmacokinetics of sebacoyl dinalbuphine, Drug Metab Dispos, 33 (2005) 395-402.
[27] J.R. Hill, In vitro drug metabolism using liver microsomes, Curr Protoc Pharmacol, Chapter 7 (2004) Unit7 8.
[28] A. Albert, Chemical aspects of selective toxicity, Nature, 182 (1958) 421-422.
[29] M. Rooseboom, J.N. Commandeur, N.P. Vermeulen, Enzyme-catalyzed activation of anticancer prodrugs, Pharmacol Rev, 56 (2004) 53-102.
[30] B.M. Liederer, R.T. Borchardt, Enzymes involved in the bioconversion of ester-based prodrugs, J Pharm Sci, 95 (2006) 1177-1195.
[31] P.W. Huang, H.T. Liu, C.H. Hsiong, L.H. Pao, C.C. Lu, S.T. Ho, O.Y. Hu, Simultaneous determination of nalbuphine and its prodrug sebacoly dinalbuphine ester in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry and its application to pharmacokinetic study in humans, Biomed Chromatogr, 27 (2013) 831-837.
[32] L.H. Pao, C.H. Hsiong, O.Y. Hu, S.T. Ho, High-performance liquid chromatographic method for the simultaneous determination of nalbuphine and its prodrug, sebacoyl dinalbuphine ester, in dog plasma and application to pharmacokinetic studies in dogs, J Chromatogr B Biomed Sci Appl, 746 (2000) 241-247.
[33] S.T. Ho, J.J. Wang, O.Y. Hu, P.S. Chiang, S.C. Lee, Determination of nalbuphine by high-performance liquid chromatography with ultraviolet detection: application to human and rabbit pharmacokinetic studies, J Chromatogr B Biomed Appl, 678 (1996) 289-296.
[34] E. Nicolle, S. Michaut, F. Serre-Debeauvais, G. Bessard, Rapid and sensitive high-performance liquid chromatographic assay for nalbuphine in plasma, J Chromatogr B Biomed Appl, 663 (1995) 111-117.
[35] E.N. Fung, N. Zheng, M.E. Arnold, J. Zeng, Effective screening approach to select esterase inhibitors used for stabilizing ester-containing prodrugs analyzed by LC–MS/MS, (2010).
[36] W. Li, J. Zhang, F.L. Tse, Strategies in quantitative LC‐MS/MS analysis of unstable small molecules in biological matrices, Biomedical Chromatography, 25 (2011) 258-277.
[37] J.-G. Zhang, M.W. Fariss, Thenoyltrifluoroacetone, a potent inhibitor of carboxylesterase activity, Biochemical pharmacology, 63 (2002) 751-754.
[38] K.H. Nam, S.-J. Kim, A. Priyadarshi, H.S. Kim, K.Y. Hwang, The crystal structure of an HSL-homolog EstE5 complex with PMSF reveals a unique configuration that inhibits the nucleophile Ser144 in catalytic triads, Biochemical and biophysical research communications, 389 (2009) 247-250.
[39] M. Chattopadhyay, R. Kodela, N. Nath, C.R. Street, C.A. Velázquez-Martínez, D. Boring, K. Kashfi, Hydrogen sulfide-releasing aspirin modulates xenobiotic metabolizing enzymes in vitro and in vivo, Biochemical pharmacology, 83 (2012) 733-740.
[40] S.a. Tomić, A.a. Treščec, J. Tomašić, B. Petrović, V.S. Rudolf, M. Škrinjarić-Špoljar, E. Reiner, Catalytic properties of rabbit serum esterases hydrolyzing esterified monosaccharides, Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1251 (1995) 11-16.
[41] S. Kuipers, P.C. Aerts, A.G. Sjöholm, T. Harmsen, H. van Dijk, A hemolytic assay for the estimation of functional mannose-binding lectin levels in human serum, Journal of immunological methods, 268 (2002) 149-157.
[42] X.L. Wei, R. Han, X. Hu, L.H. Quan, C.Y. Liu, Q. Chang, Y.H. Liao, Stabilization of zeylenone in rat plasma by the presence of esterase inhibitors and its LC-MS/MS assay for pharmacokinetic study, Biomed Chromatogr, 27 (2013) 636-640.
[43] S. Yu, S. Li, H. Yang, F. Lee, J.T. Wu, M.G. Qian, A novel liquid chromatography/tandem mass spectrometry based depletion method for measuring red blood cell partitioning of pharmaceutical compounds in drug discovery, Rapid Commun Mass Spectrom, 19 (2005) 250-254.
[44] R. Ulvik, I. Romslo, Effect of thenoyltrifluoroacetone on oxygen consumption and energy conservation in isolated rat liver mitochondria, FEBS Lett, 59 (1975) 180-183.
[45] A. Quillet-Mary, J.P. Jaffrezou, V. Mansat, C. Bordier, J. Naval, G. Laurent, Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis, J Biol Chem, 272 (1997) 21388-21395.
[46] J. Duranteau, N.S. Chandel, A. Kulisz, Z. Shao, P.T. Schumacker, Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes, J Biol Chem, 273 (1998) 11619-11624.
[47] M.A. Tirmenstein, F.A. Nicholls-Grzemski, J.G. Zhang, M.W. Fariss, Glutathione depletion and the production of reactive oxygen species in isolated hepatocyte suspensions, Chem Biol Interact, 127 (2000) 201-217.
[48] C. Kimura, M. Oike, Y. Ito, Hypoxia-induced alterations in Ca(2+) mobilization in brain microvascular endothelial cells, Am J Physiol Heart Circ Physiol, 279 (2000) H2310-2318.
[49] D.M. Maxwell, The specificity of carboxylesterase protection against the toxicity of organophosphorus compounds, Toxicol Appl Pharmacol, 114 (1992) 306-312.
[50] F. Meunier, H.G. Prentice, O. Ringden, Liposomal amphotericin B (AmBisome): safety data from a phase II/III clinical trial, J Antimicrob Chemother, 28 Suppl B (1991) 83-91.
[51] R.N. Mamidi, S. Weng, S. Stellar, C. Wang, N. Yu, T. Huang, A.P. Tonelli, M.F. Kelley, A. Angiuoli, M.C. Fung, Pharmacokinetics, efficacy and toxicity of different pegylated liposomal doxorubicin formulations in preclinical models: is a conventional bioequivalence approach sufficient to ensure therapeutic equivalence of pegylated liposomal doxorubicin products?, Cancer Chemother Pharmacol, 66 (2010) 1173-1184.
[52] W.V. Bobo, R.C. Shelton, Risperidone long-acting injectable (Risperdal Consta(R)) for maintenance treatment in patients with bipolar disorder, Expert Rev Neurother, 10 (2010) 1637-1658.
[53] Y.Y. Syed, G.M. Keating, Extended-release intramuscular naltrexone (VIVITROL(R)): a review of its use in the prevention of relapse to opioid dependence in detoxified patients, CNS Drugs, 27 (2013) 851-861.
[54] P. Grass, P. Marbach, C. Bruns, I. Lancranjan, Sandostatin LAR (microencapsulated octreotide acetate) in acromegaly: pharmacokinetic and pharmacodynamic relationships, Metabolism, 45 (1996) 27-30.
[55] C.Y. Yeh, S.W. Jao, J.S. Chen, C.W. Fan, H.H. Chen, P.S. Hsieh, C.C. Wu, C.C. Lee, Y.H. Kuo, M.C. Hsieh, W.S. Huang, Y.C. Chung, T.Y. Liou, H.H. Chiu, W.K. Tseng, K.C. Lee, J.Y. Wang, Sebacoyl Dinalbuphine Ester Extended-release Injection for Long-acting Analgesia: A Multicenter, Randomized, Double-Blind, And Placebo-controlled Study in Hemorrhoidectomy Patients, Clin J Pain, 33 (2017) 429-434.
校內:2022-08-01公開