| 研究生: |
陳姵蓁 Chen, Pei-Chen |
|---|---|
| 論文名稱: |
自由水面蒸發公式建立及水庫蒸發水量估計 Establishing free water surface evaporation formula and estimating reservoir evaporation |
| 指導教授: |
陳憲宗
Chen, Shien‐Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 自由水面蒸發公式 、水庫蒸發量 、邊壁效應 、蒸發皿 |
| 外文關鍵詞: | free water surface evaporation formula, reservoir evaporation, side wall effect, evaporation pan |
| 相關次數: | 點閱:116 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以PenPan V2 Model與PenPan V3 Model中的空氣動力學與能量平衡理論,探討臺灣十個測站的A型及20公分蒸發皿的蒸發量成因與比例。由分析結果得知,於A型蒸發皿,空氣動力及輻射對蒸發的影響分別為21%與79%;於20公分蒸發皿,空氣動力及輻射對蒸發的影響分別為25%與75%。估計邊壁效應對皿蒸發量的影響,並推求自由水面蒸發占皿蒸發量的比例,得到A型蒸發皿的邊壁效應占27%,自由水面蒸發量為皿蒸發量的73%;20公分蒸發皿的邊壁效應占58%,自由水面蒸發量為皿蒸發量的42%。本研究利用兩蒸發皿的月蒸發量及邊壁效應影響比例資料,推估所得自由水面蒸發量,分別與A型及20公分皿的蒸發量資料建立截距為零的線性回歸關係式,得到利用皿蒸發量推估自由水面蒸發量的簡便公式,將A型皿觀測值乘以0.74可得自由水面蒸發量;將20公分皿觀測值乘以0.54可得自由水面蒸發量。本研究進一步利用兩推估的自由水面蒸發量,並加入全天空日射量及氣溫,建立自由水面蒸發公式,再考慮應用到全臺灣通用性,發展出三組分區公式。本研究將自由水面蒸發公式應用於臺灣重要水庫的蒸發水量估算,對於水庫水資源及水平衡的掌握,提供簡便且精確的水庫蒸發水量估計值。
This study used the aerodynamics and energy balance theories to investigate the pan evaporation and to develop the free water surface evaporation formula. PenPan V2 Model and PenPan V3 Model were applied to estimate the evaporation from the Class A evaporation pan and the 20-cm evaporation pan, respectively, at 10 stations in Taiwan. Analysis results revealed that for the Class A evaporation pan, the aerodynamics and radiation contribute 21% and 79% of the evaporation rate, respectively; for the 20-cm evaporation pan, the aerodynamics and radiation contribute 25% and 75%, respectively. The study estimated the influence of side wall effect on the evaporation and inferred that the free water surface evaporation accounts for 73% of total evaporation in the Class A evaporation pan and 42% in the 20-cm evaporation pan, with side wall effect contributing 27% and 58%, respectively. This study used monthly evaporation data and side wall effect ratios from both evaporation pans to estimate the free water surface evaporation. A simple method to estimate the free water surface evaporation is to multiply the observations of the Class A evaporation pan by 0.74, and to multiply the observations of the 20-cm evaporation pan by 0.54. This study further developed three regional free water surface evaporation formulae by utilizing the solar radiation and air temperature. These regional formulae were applied to estimate the free water surface evaporation from major reservoirs in Taiwan.
Ahwide, F., Spena, A., and El-Kafrawy, A. (2013). Correlation for the Average Daily Diffuse Fraction with Clearness Index and Estimation of Beam Solar Radiation and Possible Sunshine Hours Fraction in Sabha, Ghdames and Tripoli – Libya. APCBEE Procedia(5), 208–220.
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements. FAO Irrigation and drainage paper 56, FAO, ISBN 92–5–104219–5.
Al-Sudani, H. I. Z. (2019). Derivation mathematical equations for future calculation of potential evapotranspiration in Iraq, a review of application of Thornthwaite evapotranspiration. Iraqi Journal of Science, 60(5), 1037-1048.
Crago, R. D., Szilagyi, J., & Qualls, R. J. (2023). What is the Priestley–Taylor wet-surface evaporation parameter? Testing four hypotheses. Hydrology and Earth System Sciences, 27(17), 3205-3220.
Dingman, S. L. (2015) Physical Hydrology, Third ed. Waveland Press, The United States of America.
Hamon, W. R. (1961). Estimating potential evapotranspiration. Journal of the Hydraulics Division, 87(3), 107-120.
Hamon,W.R.(1963).Estimating potential evapotranspiration. Transactions of the American Society of Civil Engineers, 128(1), 324-338.
Lim, W. H., Roderick, M. L., and Farquhar, G. D. (2016). A mathematical model of pan evaporation under steady state conditions. Journal of Hydrology(540), 641–658.
Lim, W. H., Roderick, M. L., Hobbins, M. T., Wong, S. C., and Farquhar, G. D. (2013). The energy balance of a US Class A evaporation pan. Agricultural and Forest Meteorology(182-183), 314–331.
Lim, W. H., Roderick, M. L., Hobbins, M. T., Wong, S. C., Groeneveld, P. J., Sun, F., and Farquhar, G. D. (2012). The aerodynamics of pan evaporation. Agricultural and Forest Meteorology(152), 31–43.
Linacre, E. T. (1994). Estimating US Class A pan evaporation from few climate data. Water International, 19(1), 5-14.
Monteith, J. L. (1981). Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society, 107(451), 1-27.
McCabe, G. J., Hay, L. E., Bock, A., Markstrom, S. L., & Atkinson, R. D. (2015). Inter-annual and spatial variability of Hamon potential evapotranspiration model coefficients. Journal of Hydrology, 521, 389-394.
Penman, H. L., (1948). Natural evaporation from open water, bare soil and grass. Proc.R. Soc. London, Ser. A(193), 120–145.
Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly weather review, 100(2), 81-92.
Roderick, M. L. (1999). Estimating the diffuse component from daily and monthly measurements of global radiation. Agricultural and Forest Meteorology(95), 169–185.
Rotstayn, L.D., Roderick, M. L., and Farquhar, G. D., (2006). A simple pan-evaporation model for analysis of climate simulations: evaluation over Australia. Geophys. Res. Lett. 33, L17715.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate. Geographical review, 38(1), 55-94.
Thom, A. S., Thony, J. L., & Vauclin, M. (1981). On the proper employment of evaporation pans and atmometers in estimating potential transpiration. Quarterly Journal of the Royal Meteorological Society, 107(453), 711-736.
Valiantzas, J. D. (2006). Simplified versions for the Penman evaporation equation using routine weather data. Journal of Hydrology, 331(3-4), 690-702.
Wang, K., Liu, X., Li, Y., Liu, C., & Yang, X. (2018). A generalized evaporation model for Chinese pans. Journal of Geophysical Research: Atmospheres, 123(19), 10-943.
Wang, K., Liu, X., Li, Y., Yang, X., Bai, P., Liu, C., and Chen, F. (2019). Deriving a long-term pan evaporation reanalysis dataset for two Chinese pan types. Journal of Hydrology(579), 124162.
Wang, K., Liu, X., Liu, C., Yang, X., Bai, P., and Li, Y. (2019). The unignorable impacts of pan wall on pan evaporation dynamics. Agricultural and Forest Meteorology(274), 42–50.
方貽萱(2017)20公分蒸發皿及A型蒸發皿蒸發量之差異分析,逢甲大學水利工程與資源保育學系碩士論文。
潘詠瑄(2022)以空氣動力學與能量平衡理論探討台灣A型及20公分蒸發皿邊壁效應,國立成功大學水利及海洋工程學系碩士論文。
陳尉平(2009)臺灣地區區域化蒸發散量參數之評估,計畫編號: CN9826。
陳琦玲、林正錺、劉滄棽(1994)臺灣地區平地日射量之估算分析,中華農業研究。
經濟部水利署水利規劃試驗所(2019)108年北部區域水資源經濟計畫滾動探討。
經濟部水利署水利規劃試驗所(2019)108年中部區域水資源經濟計畫滾動探討。
經濟部水利署水利規劃試驗所(2019)108年南部區域水資源經濟計畫滾動探討。
交通部中央氣象署(2004)地面氣象測報作業規範。
交通部中央氣象署(2020)氣象文物典藏,中央氣象局南區氣象服務,擷取時間2023年4月30日,檢自https://south.cwb.gov.tw/fileApply/list/eRAT1565250549tujm?page=2。
交通部中央氣象署 (無日期) 觀測坪,中央氣象局e導覽,擷取時間2023年4月30日,檢自https://etour.cwa.gov.tw/guide_inpage.php?stn_id=8&floor_id=8&spot_id=10。