簡易檢索 / 詳目顯示

研究生: 范庭瑜
Fan, Ting-Yu
論文名稱: 應用地電阻於轉爐石掩埋探測:砂箱試驗
Detecting buried slags by Electrical Resistivity Tomography : sandbox experiments
指導教授: 洪瀞
Hung, Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 81
中文關鍵詞: 地電阻砂箱試驗四極法轉爐石
外文關鍵詞: electrical resistivity tomography, slag, sandbox experiment
相關次數: 點閱:58下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣近年發生許多轉爐石未被妥善處理的事件,傳統上評估汙染場址的方式為開挖及鑽探取樣,然而這樣的方法既為破壞性,又無法有效獲得大面積地下資訊,地電阻影像剖面法透過選擇適當的電極排列施測,可快速獲得大範圍的地層電阻率影像剖面,在應用於地下掩埋物上也有不少文獻研究,因此若能透過地電阻此一地球物理方法做轉爐石掩埋偵測的協助,將能提供國內相似汙染場址調查上的參酌。
    本研究以粉砂土、轉爐石細砂作為研究材料。首先先對材料進行物性試驗及電性試驗以了解性質,其中,電性試驗以四極法搭配含水量試驗,利用Archie’s Equation建立電阻率-飽和度擬合關係式,比較兩材料在電學性質上的差異,再以一維反算設計最適當的砂箱配置,砂箱試驗上研究了3 Layers、2 Layers、Single block三種配置,分別探討在垂直向(3 Layers、2 Layers)及水平向(2 Layers、Single block)上,地電阻影像剖面圖的不同處,並搭配四極法量測表層電阻率值,用以驗證地電阻數值的正確性,最後再以二維正算模擬理想均質狀態下的電阻率成像,跟實際量測地電阻剖面影像相比較,來做檢討及分析,以評估用ERT偵測轉爐石位置之可靠度,試驗結果主要如下:
    (1) 就本試驗材料電阻-飽和度擬合結果來看,兩材料在近似含水量下,單就電阻難有辨識性。
    (2) 電阻-飽和度擬合曲線可用以檢查後續試驗數據合理性,不同的材料擬合方程式不盡相同,但能確定Archie’s Equation在質性上電阻值和飽和度為指數反比。
    (3) 本研究砂箱試驗有兩種可能誤差原因,一是電流源非點電源,二則為邊界效應。

    In recent years, there have been many incidents in Taiwan where slags have not been properly handled. The traditional method of assessing contaminated sites is excavation and drilling. However, both methods are destructive and ineffective. On the other hand, electrical resistivity tomography (ERT), which is one of the geophysical prospecting, can obtain a wide range of resistivity tomography effectively. In this case, the study attempted to use ERT to detect buried slag, which could be able to provide reference in the investigation of similar sites.
    This study uses silty sand and slag as the research materials. First, we used 4-pole method to establish the resistivity-saturation fitting curve to compare the electrical properties of the two materials. Next, we designed the most appropriate sandbox configuration with one-dimensional inverse calculation. Then, we did ERT test on three sandbox configurations. Finally, we used two-dimensional positive calculation to evaluate the rationality of the results. The principal conclusions are as follows:

    (1) According to the resistance-saturation curve fitting results, the electrical properties of silt sand and slag are similar. Under the same water content, it is difficult to distinguish from the electrical resistance alone.

    (2) The resistance-saturation fitting curve can be used to check the rationality of the subsequent test data. The fitting equations for different materials are not the same. However, it is determined that the resistance value and saturation of the Archie's Equation are inversely proportional to the exponential value.

    (3) There may be two major errors of the sandbox experiment. One is that the penetration depth of electrode is close to the spacing, which causes the current sources are not in the form of point sources. The other one is the boundary effect. In this study, the array length is too close to the sandbox wall, which leads to measurement errors.

    摘要 I 目錄 VIII 圖目錄 XII 表目錄 XV 第一章 緒論 1 1-1 研究動機與目的 1 1-2 研究內容與流程 2 第二章 文獻回顧 4 2-1 地電阻影像剖面法(ERT) 4 2-1-1 地電阻探測原理 4 2-1-2 電極排列比較 8 2-1-3 Archie’s Equation 12 2-2 地電阻應用 14 2-2-1 砂箱試驗 14 2-2-2 邊界效應 15 2-3 影響土壤電阻係數因素 15 2-4 轉爐石 16 2-4-1 轉爐石化學成分 16 2-4-2 轉爐石電學性質 17 第三章 研究方法 18 3-1 地質材料導電特性 18 3-1-1 四極法 19 3-1-2 Archie’s Equation擬合分析 19 3-2 地電阻計算方法 20 3-2-1 正算模擬理論 20 3-2-2 反算分析理論 21 第四章 試驗步驟 23 4-1 研究材料 23 4-2 研究材料物性試驗 23 4-2-1 比重試驗 23 4-2-2 粒徑分布試驗 24 4-3 研究材料電性試驗 26 4-3-1 含水量試驗 26 4-3-2 擬合試驗儀器配置 27 4-3-3 試驗規劃 28 4-3-4 電流大小探討 29 4-3-5 施測頻率探討 30 4-4 數值模擬試驗 30 4-4-1 一維反算:Res1DMOD 30 4-4-2 研究流程 32 4-4-3 二維正算:Res2DMOD 33 4-4-4 研究流程 35 4-5 砂箱試驗 35 4-5-1 土樣準備與試驗儀器配置 35 4-5-2 砂箱試驗:3 Layers 36 4-5-3 砂箱試驗:2 Layers 38 4-5-4 砂箱試驗:Single Block 41 第五章 試驗結果與分析 46 5-1 研究材料物性試驗結果 46 5-1-1 比重試驗結果 46 5-1-2 粒徑分析試驗結果 46 5-2 研究材料電性試驗結果 49 5-2-1 土壤電阻-飽和度擬合結果 49 5-2-2 轉爐石細砂電阻-飽和度擬合結果 54 5-2-3 兩材料電阻-飽和度擬合比較 57 5-2-4 施測電流-電阻關係探討 58 5-2-5 施測頻率-電阻關係探討 61 5-3 一維數值反算結果 63 5-4 砂箱試驗結果 66 5-4-1 砂箱試驗:3 Layers 66 5-4-2 砂箱試驗:2 Layers 67 5-4-3 砂箱試驗:Single Block 68 5-5 二維數值正算結果 73 5-5-1 Res2DMOD:2 Layers 73 5-5-2 Res2DMOD:Single Block 74 第六章 結論與建議 75 6-1 結論 75 6-2 建議 77 參考文獻 78

    1. Amidu, S. A. and J. A. Dunbar. "An evaluation of the electrical-resistivity method for water-reservoir salinity studies." ,Geophysics 73 (4) : G39-G49, 2008.
    2. Barker, R.. "Depth of investigation of collinear symmetrical four-electrode arrays." Geophysics 54 (8) : 1031-1037, 1989.
    3. Chen, J., et al.. "Estimating groundwater velocity using apparent resistivity tomography: A sandbox experiment.",IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2016.
    4. Dahlin, T.."2D resistivity surveying for environmental and engineering applications." First break 14 (7), 1996.
    5. deGroot-Hedlin, C. and S. Constable. "Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data." Geophysics 55(12) : 1613-1624, 1990.
    6. Dey, A. and H. Morrison. "Resistivity modelling for arbitrarily shaped two‐dimensional structures." Geophysical Prospecting 27 (1) : 106-136, 1979.
    7. Ding, Y.-C., et al. "Study on the treatment of BOF slag to replace fine aggregate in concrete." Construction and Building Materials 146: 644-651, 2017.
    8. Edwards, L.. "A modified pseudosection for resistivity and IP." Geophysics 42 (5) : 1020-1036, 1977.
    9. Gunn, D., et al.. "Moisture monitoring in clay embankments using electrical resistivity tomography." Construction and Building Materials 92 : 82-94, 2015.
    10. Guo, Y., et al.. "Utilization of unprocessed steel slag as fine aggregate in normal-and high-strength concrete." Construction and Building Materials 204 : 41-49, 2019.
    11. Hung, Y.-C., et al.. "3D and Boundary Effects on 2D Electrical Resistivity Tomography." Applied Sciences 9 (15) : 2963, 2019.
    12. Inman, J.R., "Resistivity inversion with ridge regression." Geophysics, 40:798-817, 1975.
    13. Jones, G., et al.. "Mapping desiccation fissures using 3-D electrical resistivity tomography." Journal of Applied Geophysics 84 : 39-51, 2012.
    14. Keller, G. V. and F. C. Frischknecht. "Electrical methods in geophysical prospecting." Pergamon, Oxford , 18-184, 1996.
    15. Koefoed O.. "Geosounding Principles 1 : Resistivity sounding measurements." Elsevier Science Publishing Company, Amsterdam.,1979.
    16. Kumar, A.. "Utilisation of wastes from integrated steel plant with special reference to India." International Journal of Engineering Research & Technology (IJERT) 3 (1) : 47-52, 2014.
    17. Lines L.R. and Treitel S.. "Tutorial : A review of least-squares inversion and its application to geophysical problems." Geophysical Prospecting 32:159-186, 1984.
    18. Loke, M.. "The inversion of two-dimensional resistivity data. " Unpubl, PhD thesis, Un. Of Birmingham, 1994.
    19. Loke, M., et al.. "Electrical resistivity surveys and data interpretation." in Gupta, H (ed.), Solid Earth Geophysics Encyclopaedia (2nd Edition) “Electrical & Electromagnetic” Springer-Verlag, 276-283, 2011.
    20. Loke, M. H., et al.. "A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys." Exploration Geophysics 34 (3) : 182-187, 2013.
    21. Loke, M. "Tutorial : 2-D and 3-D electrical imaging surveys. " 1996-2020.
    22. Martínez-Pagán, P., et al.. "Electrical resistivity imaging revealed the spatial properties of mine tailing ponds in the Sierra Minera of Southeast Spain." Journal of Environmental & Engineering Geophysics 14 (2) : 63-76, 2009.
    23. Merrick, N.. "A new resolution index for resistivity electrode arrays." Exploration Geophysics 28 (2) : 106-109, 1997.
    24. Sasaki, Y.. "Resolution of resistivity tomography inferred from numerical simulation 1." Geophysical Prospecting 40 (4) : 453-463, 1992.
    25. Sentenac, P. and M. Zielinski. "Clay fine fissuring monitoring using miniature geo-electrical resistivity arrays." Environmental Earth Sciences 59 (1) : 205-214, 2009.
    26. Silvester, P. P. and R. L. Ferrari. "Finite elements for electrical engineers" Cambridge university press, 1996.
    27. Telford, W. M., et al.. "Applied geophysics" Cambridge university press, 1990.
    28. Trogu, A., et al.. "3D electrical resistivity tomography to improve the knowledge of the subsoil below existing buildings." Environmental Semeiotics 4 (4) : 63-70, 2011.
    29. Waxman, M. H. and L. Smits. "Electrical conductivities in oil-bearing shaly sands." Society of Petroleum Engineers Journal 8 (02) : 107-122, 1968.
    30. Xu, D., et al.. "Mapping soil layers using electrical resistivity tomography and validation: Sandbox experiments." Journal of Hydrology 575 : 523-536, 2019.
    31. Yildirim, I. Z. and M. Prezzi . "Use of steel slag in subgrade applications.", Joint Transportation Research Program , West Lafayette, Indiana, 2009.
    32. 吳瑋晉,「結合地電阻法與 TDR 於土層含水特性之監測」,碩士論文,國立陽明交通大學,台灣,新竹,2007。
    33. 林承漢,「轉爐石應用於圍堤造地濾層之材料」,碩士論文,國立中興大學土木工程學系所,台灣,台中,2019。
    34. 姚奕全,「應用地電阻法於崩積層含水特性調查與監測之初探」,碩士論文,國立陽明交通大學,台灣,新竹,2007。
    35. 許伯良、林平全、徐登科,「轉爐石產製與工程應用」,轉爐石應用於瀝青混凝土鋪面研討會,中聯資源股份有限公司,台灣,高雄,2011。
    36. 連均唯,「轉爐石於瀝青混凝土鋪面之應用」,碩士論文,國立成功大學土木工程學系,台灣,台南,2019。
    37. 郭振銘、林智強、饒莞馨、王倍夫,「改質轉爐石應用於鐵路道碴之性能試驗」, 鋪面工程,第十四卷,第二期,p.19-24,台灣,2016。
    38. 陳文輝,「添加轉爐石粉對混凝土工程性質影響之研究」,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所,台灣,高雄,2008。
    39. 陳新得 ,「利用廢棄物物質作為降低接地電阻材料之研究」,成果報告,行政院國家科學委員會專題研究計畫,台灣,2007。

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE