| 研究生: |
黃慧琦 Huang, Hui-Chi |
|---|---|
| 論文名稱: |
利用蛇紋石於氣相系統中進行二氧化碳固定化之研究 Studies on Carbon Dioxide Fixation on Serpentine in a Gas-Phase Environment |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 氫氧化鎂 、固定化反應 、蛇紋石 、二氧化氮 |
| 外文關鍵詞: | Fixation reduction, Carbon dioxide, Serpentine, Magnesium hydroxide |
| 相關次數: | 點閱:120 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於蛇紋石在氣態下與二氧化碳進行吸收無法達到很好的效率,因此本研究試圖利用氫氧化鎂取代之。本實驗運用花蓮礦藏豐富之蛇紋石,經由HCl進行水熱處理後,以NaOH調節pH值製備而成的,表面積大約為81m2/g。並由XRD證明為氫氧化鎂的晶相,且已可得到很高的轉化率。
熱重分析儀中以恆溫和非恆溫之熱重分析方法與固定化反應器分析研究氫氧化鎂之吸收和脫附,反映出Mg(OH)2-lab2較商業化有更好的吸收效率,因此證實Mg(OH)2-lab2在對於固定二氧化碳有較好的優勢。另外,在動力學實驗方面,氫氧化鎂脫OH基及碳酸化之動力學研究,是以等溫方法來分析,發現contracting-sphere (or phase-boundary-reaction) 能套適氫氧化鎂在TGA反應中的反應機制,因此可以透過模式來預測不同反應條件的行為。
Because it is unable to reach a very good efficiency that the serpentine is absorbed with the carbon dioxide under the gaseous state, this research attempts to utilize magnesium hydroxide to replace it. This uses the abundant serpentine of mineral of Hualian, from hydrothermal treatment followed by HCl, regulated with NaOH, the magnesium hydroxide surface area was probably 81m2/g. The crystal phase from XRD proof that magnesium hydroxide obtained the high conversion rate.
In isothermal and nonisothermal thermorgravimetric analyses and fixation, reflected Mg(OH)2-lab2 compares commercial to have the better efficiency in adsorption. This examined Mg(OH)2 - lab2 was advantageous for commercial magnesium hydroxide. From using isothermal TGA for kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide. The result showed that it can be fitted within contracting-sphere (or phase-boundary-reaction). And the behavior of magnesium hydroxide can be predicted at different conditions by contracting-sphere (or phase-boundary-reaction) model.
[1] 台灣省礦物局,台灣主要礦物與岩石,1996。
[2] 戚啟勳,“地球科學”, 1978。“台灣主要礦
物與岩石”
[3] 陳茂松 ,“CO2 回收及其處理技術”, 台電工
程月刊, 81.7, 54-59。
[4] 蕭國源,“固體吸收劑二氧化碳吸收能力之評
估”, 碩士論文, 國立台灣大學,台北, 台灣
(2000)。
[5] Alexander, K.; Wilburn, F.W.; Khan N.;
Dollimore, D., “The origin of the
exothermic peak in the thermal
decomposition of basic magnesium
carbonate”, Thermochim. acta., 367,
321, 2001.
[6] Blackburn, D.; Nagamori, M., “Slurry
Filtration and Cake Washing after HCl-
Leach of Magnesite and Serpentine--
Continuous Washing Model”,
Metallurgical and Materials
TransactionsB 25B, 321, 1994.
[7] Butt, D. P.; Lackner, K. S. & Wendt, C.
H., “The kinetics of binding carbon
dioxide in magnesium carbonate”,
Proceedings of the 23th international
conference on coal utilization and fuel
systems, Clearwater, Florida, USA. 1998
[8] Butt, D.P.; Lackner, K.S.; Wendt, C.H.;
Conzone, S.D.; Kung, H.; Liu,
Y. C.; Bremser, J.K., “Kinetics of
thermal dehydroxylation and carbonation
of magnesium hydroxide”, J. Am. Soc.
79, 1892, 1996.
[9] Brunaller, S.; Emmett, P.H.; Teller,
E., J. Am. Chem. Soc. 60, 390, 1938.
[10] Barrett, E.P.; Joyner, L.G. and
Halenda, P.P., “The determination of
pore volume and area distributions in
porous substances. I. Computations from
nitrogen isotherms”, J. Am. Chem. Soc.
73, 373, 1951.
[11] Cullity, B.D.; S.R. Stock, “Elements
of X-Ray Diffraction”, Prentice Hall,
2001.
[12] Chris Pellant , “ Rocks and
Minerals”, 朱靜江譯 , 1995
[13] Carter, R.E., ”Kinetics model for
solid-state reactions”, J. chem. phys.
34(6), 2010, 1961.
[14] Ertl,G..; Knözinger, H.; Weitkamp, J.,
VCH D-69451 Weinheim 3, 1508, 1997.
[15] Fan, L.S.; Park, A-H.A., “CO2 mineral
sequestration: physically activated
dissolution of serpentine and pH swing
process”, Chem. eng. sci. 59, 5241,
2004.
[16] Fauth, D. J.; Goldberg, P. M.; Knoer,
J. P.; Soong, Y.; O'Connor, W.
K.; Dahlin, D. C.; Nilsen, D. N.;
Walters, R. P.; Lackner, K. S.;
Ziock, H.-J.; McKelvy, M. J. & Chen, Z.-
Y. “Carbondioxide storage as
mineral carbonates”, Preprints of
symposia - American Chemical
Society,Division Fuel Chemistry, 708,
2000.
[17] Goldberg, P.; Z-Y Chen, O’Connor, W.;
Walters, R.; Ziock, H., “CO2 mineral
sequestration studies in US,”
presented at the First National
Conference on Carbon Sequestration,
Washington, 2001, DC, May 14-17
[18] Hayashi, H.; Taniuchi, J.; Furuyashiki,
N.; Sugiyama, S.; Hirano, S.;
Shigemoto, N.; Nonaka, T., “Efficient
Recovery of Carbon Dioxide from Flue
Gases by Cyclic Fixed-Bed Operations
over K2CO3-on-Carbon”Ind. Eng. Chem.
Res. 37, 185, 1998.
[19] Kohlmann, J., “Removal of CO2 from
flue gases using magnesium silicates in
Finland”, Helsinkiuniversity of
technology department of mechanical
engineering, Espoo, TKK-ENY-3., 2001.
[20] Kojima, T.; Nagamine, A.; Ueno, N. &
Uemiya, S., “Absorption and fixation
of carbon dioxide by rock weathering”,
Energy Conversion and Management 38,
S461, 1997.
[21] Lackner, K.S.; Butt, D.P.; Wendt, C.H.,
“Progress on binding CO2 in mineral
substrates”, Energy Comers. Mgmt. 38,
259, 1997b.
[22] Lackner, K.S.; Goff, F., “Carbon
dioxide sequestering using ultrmatic
rocks”, Environ. Geo. 5, 89, 1998.
[23] Lackner, K.S.; Went, C.H.; Butt, D.P.;
Joyce, Jr.E.L.; Sharp, D.H.,
“Carbon dioxide disposal in carbonate
minerals”, Energy 11, 1153, 1995.
[24] Lowell, S.; Shields, J.E., “Powder
surface area and porosity”, New York:
Chapman & Hall, 1991.
[25] Maroto-Valer, M.M.; Fauth, D.J.;
Kuchta, M.E.; Zhang, Y.; Andrésen,
J.M., “Activation of magnesium rich
minerals as carbonation feedstock
materials for CO2 sequestration”, Fuel
Processing Technology 86, 1627, 2005.
[26] Newall, P.S.; Clarke, S.J.; Haywood,
H.M.; Scholes, H.; Clarke, N.R. & King,
P.A., “CO2 storage as carbonate
minerals”, IEA, Cheltenham, UK. 1999
[27] Nesbitt H. W. and Young G. M.,
“Prediction of some weathering trends
of plutonic and volcanic rocks based on
thermodynamic and kinematic
considerations”, Geochim. Et
Cosmochim. Acta. 48, 1523, 1984.
[28] O'Connor, W.K.; Dahlin, D.C.; Nilsen,
D.N.; Walters, R.P. & Turner,
P.C., “Carbon dioxide sequestration by
direct mineral carbonation
with carbonic acid”, Proceedings, 25th
international technical
conference on coal utilization and fuel
systems, Clearwater, Florida., 2000b.
[29] Pokrovesky, O.S.; Schott J., “Kinetics
and mechanism of forsterite
dissolution at 25°C and pH from 1 to
12”, Geochim. Cosmochim. Acta.
64(19), 3313, 2000.
[30] “Proceedings of Workshop NETL Mineral
CO2 Sequestration”, NETL., 2001.
[31] Ramanathan, V., “The greenhouse theory
of climate change: A test by
an inadvertent global experiment”
Science 240, 293, 1988.
[32] Warrick Bolin, Döös Jäger., (eds).,
“The Greenhouse Effect Climatic
Change and Ecosystems”, Published on
behalf of the Scientific Committee on
the Problems of the Environment of the
International Council of Scientific
Unions by Wiley 1986.
[33] Wu, J.C.S.; Sheen, J.D.; Chen, S.Y. &
Fan, Y.C., “Feasibility of CO2
fixation via artificial rock
weathering”, Ind. Eng. Chem. Res., 40
(18), 3902, 2001.
[34] Wendt, C. H.; Butt, D. P.; Lackner, K.
S. & Ziock, H.-J., “Thermodynamic
calculations for acid decomposition of
serpentine and olivine in MgCl2 melts
I”, Los Alamos National Laboratory,
Los Alamos, New Mexico, LA-UR-98-4528.,
1998a.
[35] McKelvy, M.J.; Sharma, R.; Chizmeshya,
A.V.G.; Carpenter, R.W. and Streib, K.,
“Magnesium Hydroxide Dehydroxylation:
In Situ Nanoscale Observations of
Lamellar Nucleation and Growth”, Chem.
Mater., 13, 921, 2001.