簡易檢索 / 詳目顯示

研究生: 黃慧琦
Huang, Hui-Chi
論文名稱: 利用蛇紋石於氣相系統中進行二氧化碳固定化之研究
Studies on Carbon Dioxide Fixation on Serpentine in a Gas-Phase Environment
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 氫氧化鎂固定化反應蛇紋石二氧化氮
外文關鍵詞: Fixation reduction, Carbon dioxide, Serpentine, Magnesium hydroxide
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於蛇紋石在氣態下與二氧化碳進行吸收無法達到很好的效率,因此本研究試圖利用氫氧化鎂取代之。本實驗運用花蓮礦藏豐富之蛇紋石,經由HCl進行水熱處理後,以NaOH調節pH值製備而成的,表面積大約為81m2/g。並由XRD證明為氫氧化鎂的晶相,且已可得到很高的轉化率。
    熱重分析儀中以恆溫和非恆溫之熱重分析方法與固定化反應器分析研究氫氧化鎂之吸收和脫附,反映出Mg(OH)2-lab2較商業化有更好的吸收效率,因此證實Mg(OH)2-lab2在對於固定二氧化碳有較好的優勢。另外,在動力學實驗方面,氫氧化鎂脫OH基及碳酸化之動力學研究,是以等溫方法來分析,發現contracting-sphere (or phase-boundary-reaction) 能套適氫氧化鎂在TGA反應中的反應機制,因此可以透過模式來預測不同反應條件的行為。

    Because it is unable to reach a very good efficiency that the serpentine is absorbed with the carbon dioxide under the gaseous state, this research attempts to utilize magnesium hydroxide to replace it. This uses the abundant serpentine of mineral of Hualian, from hydrothermal treatment followed by HCl, regulated with NaOH, the magnesium hydroxide surface area was probably 81m2/g. The crystal phase from XRD proof that magnesium hydroxide obtained the high conversion rate.

    In isothermal and nonisothermal thermorgravimetric analyses and fixation, reflected Mg(OH)2-lab2 compares commercial to have the better efficiency in adsorption. This examined Mg(OH)2 - lab2 was advantageous for commercial magnesium hydroxide. From using isothermal TGA for kinetics of thermal dehydroxylation and carbonation of magnesium hydroxide. The result showed that it can be fitted within contracting-sphere (or phase-boundary-reaction). And the behavior of magnesium hydroxide can be predicted at different conditions by contracting-sphere (or phase-boundary-reaction) model.

    總目錄 摘要............................I Abstract........................II 誌謝............................III 總目錄..........................IV 表目錄..........................VII 圖目錄..........................VIII 第一章 緒論....................1 1.1. 研究背景..................1 1.2. 研究目標..................9 第二章 文獻探討................10 2.1. 矽酸鹽礦石簡介............10 2.1.1. 鎂橄欖石簡介..........11 2.1.2 蛇紋石簡介............11 2.2. 矽酸鹽礦石溶解............11 2.3. 矽酸鹽礦石的碳酸化機制....16 2.3.1. 礦物的選擇............16 2.3.2. 基本熱力學性質........20 2.4. 氫氧化鎂與二氧化碳之反應..22 2.5. 氮氣吸附分析..............25 2.5.1. 等溫吸附曲線..........25 2.5.2. BET理論...............29 2.5.3. BJH理論...............30 2.6. 反應動力學模式研究........33 2.6.1. 氫氧化鎂反應動力學模式33 第三章 實驗方法................36 3.1. 實驗藥品與設備............36 3.1.1. 實驗氣體..............36 3.1.2. 實驗藥品..............36 3.1.3. 實驗設備..............37 3.2. 蛇紋石前處理..............38 3.2.1. 試樣製備方法..........38 3.2.2. 蛇紋石之前處理........38 3.3. 同時脫OH基和碳酸化反應....41 3.4. 固定化反應化分析..........41 3.5. 特性分析原理與方法........44 3.5.1. 高溫爐反應器..........44 3.5.2. 氮氣物理吸附..........46 3.5.3. X光繞射...............46 3.5.4. 熱重分析儀............47 3.5.5. 碳氧化物分析儀........47 第四章 結果與討論..............48 4.1.  蛇紋石和氫氧化鎂對二氧化碳 進行固定化之影響.........48 4.1.1. 物理特性分析..........48 4.1.2. 結構分析..............51 4.1.3. 製備氫氧化鎂獲得產率之 計算..................54 4.1.4. 蛇紋石與氧化鎂吸收二氧 化碳之探討............56 4.1.5. Mg(OH)2-ACROS和Mg(OH)2-lab2 吸收二氧化碳之探討....58 4.1.6. Mg(OH)2-ACROS和Mg(OH)2-lab2 之動力學分析..........63 4.1.7. Mg(OH)2-ACROS和Mg(OH)2-lab2 二氧化碳吸收的定量探討.71 第五章 結論.....................74 參考文獻.........................75 自述.............................78

    [1] 台灣省礦物局,台灣主要礦物與岩石,1996。
    [2] 戚啟勳,“地球科學”, 1978。“台灣主要礦
    物與岩石”
    [3] 陳茂松 ,“CO2 回收及其處理技術”, 台電工
    程月刊, 81.7, 54-59。
    [4] 蕭國源,“固體吸收劑二氧化碳吸收能力之評
    估”, 碩士論文, 國立台灣大學,台北, 台灣
    (2000)。
    [5] Alexander, K.; Wilburn, F.W.; Khan N.;
    Dollimore, D., “The origin of the
    exothermic peak in the thermal
    decomposition of basic magnesium
    carbonate”, Thermochim. acta., 367,
    321, 2001.
    [6] Blackburn, D.; Nagamori, M., “Slurry
    Filtration and Cake Washing after HCl-
    Leach of Magnesite and Serpentine--
    Continuous Washing Model”,
    Metallurgical and Materials
    TransactionsB 25B, 321, 1994.
    [7] Butt, D. P.; Lackner, K. S. & Wendt, C.
    H., “The kinetics of binding carbon
    dioxide in magnesium carbonate”,
    Proceedings of the 23th international
    conference on coal utilization and fuel
    systems, Clearwater, Florida, USA. 1998
    [8] Butt, D.P.; Lackner, K.S.; Wendt, C.H.;
    Conzone, S.D.; Kung, H.; Liu,
    Y. C.; Bremser, J.K., “Kinetics of
    thermal dehydroxylation and carbonation
    of magnesium hydroxide”, J. Am. Soc.
    79, 1892, 1996.
    [9] Brunaller, S.; Emmett, P.H.; Teller,
    E., J. Am. Chem. Soc. 60, 390, 1938.
    [10] Barrett, E.P.; Joyner, L.G. and
    Halenda, P.P., “The determination of
    pore volume and area distributions in
    porous substances. I. Computations from
    nitrogen isotherms”, J. Am. Chem. Soc.
    73, 373, 1951.
    [11] Cullity, B.D.; S.R. Stock, “Elements
    of X-Ray Diffraction”, Prentice Hall,
    2001.
    [12] Chris Pellant , “ Rocks and
    Minerals”, 朱靜江譯 , 1995
    [13] Carter, R.E., ”Kinetics model for
    solid-state reactions”, J. chem. phys.
    34(6), 2010, 1961.
    [14] Ertl,G..; Knözinger, H.; Weitkamp, J.,
    VCH D-69451 Weinheim 3, 1508, 1997.
    [15] Fan, L.S.; Park, A-H.A., “CO2 mineral
    sequestration: physically activated
    dissolution of serpentine and pH swing
    process”, Chem. eng. sci. 59, 5241,
    2004.
    [16] Fauth, D. J.; Goldberg, P. M.; Knoer,
    J. P.; Soong, Y.; O'Connor, W.
    K.; Dahlin, D. C.; Nilsen, D. N.;
    Walters, R. P.; Lackner, K. S.;
    Ziock, H.-J.; McKelvy, M. J. & Chen, Z.-
    Y. “Carbondioxide storage as
    mineral carbonates”, Preprints of
    symposia - American Chemical
    Society,Division Fuel Chemistry, 708,
    2000.
    [17] Goldberg, P.; Z-Y Chen, O’Connor, W.;
    Walters, R.; Ziock, H., “CO2 mineral
    sequestration studies in US,”
    presented at the First National
    Conference on Carbon Sequestration,
    Washington, 2001, DC, May 14-17
    [18] Hayashi, H.; Taniuchi, J.; Furuyashiki,
    N.; Sugiyama, S.; Hirano, S.;
    Shigemoto, N.; Nonaka, T., “Efficient
    Recovery of Carbon Dioxide from Flue
    Gases by Cyclic Fixed-Bed Operations
    over K2CO3-on-Carbon”Ind. Eng. Chem.
    Res. 37, 185, 1998.
    [19] Kohlmann, J., “Removal of CO2 from
    flue gases using magnesium silicates in
    Finland”, Helsinkiuniversity of
    technology department of mechanical
    engineering, Espoo, TKK-ENY-3., 2001.
    [20] Kojima, T.; Nagamine, A.; Ueno, N. &
    Uemiya, S., “Absorption and fixation
    of carbon dioxide by rock weathering”,
    Energy Conversion and Management 38,
    S461, 1997.
    [21] Lackner, K.S.; Butt, D.P.; Wendt, C.H.,
    “Progress on binding CO2 in mineral
    substrates”, Energy Comers. Mgmt. 38,
    259, 1997b.
    [22] Lackner, K.S.; Goff, F., “Carbon
    dioxide sequestering using ultrmatic
    rocks”, Environ. Geo. 5, 89, 1998.
    [23] Lackner, K.S.; Went, C.H.; Butt, D.P.;
    Joyce, Jr.E.L.; Sharp, D.H.,
    “Carbon dioxide disposal in carbonate
    minerals”, Energy 11, 1153, 1995.
    [24] Lowell, S.; Shields, J.E., “Powder
    surface area and porosity”, New York:
    Chapman & Hall, 1991.
    [25] Maroto-Valer, M.M.; Fauth, D.J.;
    Kuchta, M.E.; Zhang, Y.; Andrésen,
    J.M., “Activation of magnesium rich
    minerals as carbonation feedstock
    materials for CO2 sequestration”, Fuel
    Processing Technology 86, 1627, 2005.
    [26] Newall, P.S.; Clarke, S.J.; Haywood,
    H.M.; Scholes, H.; Clarke, N.R. & King,
    P.A., “CO2 storage as carbonate
    minerals”, IEA, Cheltenham, UK. 1999
    [27] Nesbitt H. W. and Young G. M.,
    “Prediction of some weathering trends
    of plutonic and volcanic rocks based on
    thermodynamic and kinematic
    considerations”, Geochim. Et
    Cosmochim. Acta. 48, 1523, 1984.
    [28] O'Connor, W.K.; Dahlin, D.C.; Nilsen,
    D.N.; Walters, R.P. & Turner,
    P.C., “Carbon dioxide sequestration by
    direct mineral carbonation
    with carbonic acid”, Proceedings, 25th
    international technical
    conference on coal utilization and fuel
    systems, Clearwater, Florida., 2000b.
    [29] Pokrovesky, O.S.; Schott J., “Kinetics
    and mechanism of forsterite
    dissolution at 25°C and pH from 1 to
    12”, Geochim. Cosmochim. Acta.
    64(19), 3313, 2000.
    [30] “Proceedings of Workshop NETL Mineral
    CO2 Sequestration”, NETL., 2001.
    [31] Ramanathan, V., “The greenhouse theory
    of climate change: A test by
    an inadvertent global experiment”
    Science 240, 293, 1988.
    [32] Warrick Bolin, Döös Jäger., (eds).,
    “The Greenhouse Effect Climatic
    Change and Ecosystems”, Published on
    behalf of the Scientific Committee on
    the Problems of the Environment of the
    International Council of Scientific
    Unions by Wiley 1986.
    [33] Wu, J.C.S.; Sheen, J.D.; Chen, S.Y. &
    Fan, Y.C., “Feasibility of CO2
    fixation via artificial rock
    weathering”, Ind. Eng. Chem. Res., 40
    (18), 3902, 2001.
    [34] Wendt, C. H.; Butt, D. P.; Lackner, K.
    S. & Ziock, H.-J., “Thermodynamic
    calculations for acid decomposition of
    serpentine and olivine in MgCl2 melts
    I”, Los Alamos National Laboratory,
    Los Alamos, New Mexico, LA-UR-98-4528.,
    1998a.
    [35] McKelvy, M.J.; Sharma, R.; Chizmeshya,
    A.V.G.; Carpenter, R.W. and Streib, K.,
    “Magnesium Hydroxide Dehydroxylation:
    In Situ Nanoscale Observations of
    Lamellar Nucleation and Growth”, Chem.
    Mater., 13, 921, 2001.

    下載圖示 校內:2008-07-24公開
    校外:2008-07-24公開
    QR CODE