| 研究生: |
蔡志偉 Tsai, Chih-Wei |
|---|---|
| 論文名稱: |
C6胺甲基isofagomine分子群之合成及其生物活性之探討 Synthesis and biological evaluation of C6 aminomethyl isofagomine-based molecules |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 共同指導教授: |
黃福永
Huang, Fu-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 亞胺醣 、抑制劑 、助疊小分子 、高雪氏症 |
| 外文關鍵詞: | iminosugar, inhibitor, chaperone, Gaucher disease |
| 相關次數: | 點閱:83 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
亞胺醣如isofagomine和1-deoxynujirimycin (DNJ)等,是非常具有藥效潛力的分子,例如治療代謝疾病、抑制腫瘤生長和抑制病毒和細菌活性等。由於這些分子具有許多生物活性效果,其製備方法顯得非常重要。從化學結構的角度來看,亞胺醣被認為是模仿糖苷酶水解時的過渡態oxocarbonium ion。在本論文中,我們設計了一個新的合成路徑,使用普遍且容易改質的方法來製備新的骨架稱為 C6-aminomethyl hydroxymethyl piperidine diol(AHPD)。我們將AHPD library的分子進行葡萄糖苷水解酶抑制活性測試,發現亞胺醣衍生物A17與A76為非常好的抑制劑(at nanomolar level)。此外,合成出的新穎分子也應用在助疊小分子以治療高雪氏症(Gaucher disease)。經由細胞檢測(N370S)發現,亞胺醣衍生物B117約增加突變酵素活性2.5倍為相當具有潛力的小分子。
Iminosugars such as isofagomine and 1-deoxynujirimycin (DNJ) have significant therapeutic potential for the treatment of metabolic diseases, inhibition of tumor metastasis and control infections of fungi and viruses. Due to their versatile biological activities, the preparation of them becomes very attractive and important. From the structural point of view, iminosugars might be thought as the transition state mimic of oxocarbonium-ion during the enzymatic hydrolysis of glycosidase. In this project, we have developed a new synthetic strategy to prepare new scaffolds called C6-aminomethyl hydroxymethyl piperidine diol (AHPD) with specific configuration via our general and flexible synthetic approach. These AHPD-based libraries were investigated for the inhibition of glycosidases, such as beta-glucocerebrosidase and several potent inhibitors were found at namomolar level. Besides, we also applied several AHPD-based molecules to treat N370S in fibroblasts (Gaucher disease) and these chemical chaperones increase the cellular activity around 2.5 fold.
1.(a) Paulsen, H., Carbohydrates Containing Nitrogen or Sulfur in the “Hemiacetal” Ring. Angew. Chem. Int. Engl. 1966, 5, 495-551. (b) Paulsen, H. and Todt, K., Monosaccharide mit stick stoffhaltigem Ring, XII. Uber Monosaccharide mit stickstoffhaltigem Siebenring. Chem. Ber. 1967, 100, 512-517.
2.(a) Pearson, M. S. M.; Monique, M. A.; Fargeas, V.; Lebreton, J., Recent Advances in the Total Synthesis of Piperidine Azasugars. Eur. J. Chem. 2005, 2159-2191. (b) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J., Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 2000, 11, 1645-1680. (c) Pearson, W. H.; Hines, J. V., Total Syntheses of (+)-Australine and ()-7-Epialexine. J. Org. Chem. 2000, 65, 5785-5793. (d) Goti, A.; Merino, P., Synthesis of D-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A2. Tetrahedron 2010, 66, 1220-1227. (e) Tsou, E. L.; Chen, S. Y.; Yang, N. H.; Wang, S. C.; Cheng, T. R. R.; Cheng, W. C., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorganic & Medicinal Chemistry 2008, 16, 10198-10204. (f) Johnson, C. R.; Johns, B. A., Glycomimetics: A Versatile de Novo Synthesis of -1-C-Aryl-deoxymannojirimycin Analogues. J. Org. Chem. 1997, 62, 6046-6050.
3.(a) Winchester, B.G., Iminosugars: from botanical curiosities to licensed drugs Tetrahedron: Asymmetry 2009, 20, 645-651. (b) Meloncelli, P. J., Gloster, T. M., Money, V. A., Tarling, C. A., Davies, G. J., Withers, S. G., Stick, R. V., D-Glucosylated Derivatives of Isofagomine and Noeuromycin and Their Potential as Inhibitors of -Glycoside Hydrolases. Aust. J. Chem. 2007, 60, 549-565. (c) Yang, Y.; Zheng, F.; Bols, M.; Marinesu, L. G.; Qing, F. L., Synthesis of monofluorinated isofagomine analogues and evaluation as glycosidase inhibitors. J. Fluorine Chem. 2011, 132, 838-845.
4.Horne, G.; Wilson, F. X.; Tinsley, Jon.; Williams, D. H.; Storer, R., Iminosugars past, present and future: medicines for tomorrow. Drug Discovery Today 2011, 16, 107-118.
5.(a) Zechel, D. L.; Withers, S. G., Glycosidase Mechanisms: Anatomy of a Finely Tuned Catalyst. Acc. Chem. Res. 2000, 33, 11-18. (b) Lillelund, V. H.; Jensen, H. H.; Liang X.; Bols, M., Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chem. Rev. 2002, 102, 515-553.
6.(a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M., Isofagomine, a Potent, New Giycosidase Inhibitor. Angew. Chem. Int. Ed. Engl. 1994, 33 (17), 1778-1779. (b) Bols, M., 1-Aza Sugars, Apparent Transition State Analogues of Equatorial Glycoside Formation/ Cleavage. Acc. Chem. Res.1998, 31, 1-8.
7.Varrot, A.; Tarling, Chris A.; Macdonald, J. M.; Stick, R. V.; Zechel, D. L.; Withers, S. G.; Davies, G. J., Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding. J. Am. Chem. Soc. 2003, 125, 7496-7497.
8.Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y., 1-N-Iminosugars: Potent and Selective Inhibitors of β-Glycosidases. J. Am. Chem. Soc. 1998, 120, 3007-3018.
9.Andersch, J.; Bols, M., Efficient Synthesis of Isofagomine and Noeuromycin. Eur. J .Org. Chem. 2001, 7, 3744-3747.
10.Pandey, G.; Kapur, M., A general strategy towards the synthesis of 1-N-iminosugar type glycosidase inhibitors: demonstration by the synthesis of D- as well as L-glucose type iminosugars (isofagomines). Tetrahedron Lett. 2000, 41, 8821-8824.
11.Hansen, S. U.; Bols, M., Synthesis of (±)-isofagomine and its stereoisomers from arecoline. J. Chem. Soc., Perkin Trans. 2000, 1, 911-915.
12.Zhao, G.; Deo, U. C.; Ganem, B., Selective Fowler Reductions: Asymmetric Total Syntheses of Isofagomine and Other 1-Azasugars from Methyl Nicotinate. Org. Lett. 2001, 3, 201-203.
13.Hidekazu, O.; Yukiko M.; Hiroki, T., New Route to Diverse 1-Azasugars from N-Boc-5-hydroxy-3-piperidene as a Common Building Block. J. Org. Chem. 2005, 70, 5207-5214.
14.Zhu, X.; Sheth, K. A.; Li, S.; Chang , H. H.; Fan, J. Q., Rational Design and Synthesis of Highly Potent -Glucocerebrosidase Inhibitors. Angew. Chem. Int. Ed. 2005, 44, 7450 -7453
15.Somsak, L.; Nagy, V.; Hadady, Z.; Docsa, Z.; Gergely, P., Glucose Analog Inhibitors of Glycogen Phosphorylases as Potential Anitdiabetic Agent: Recent Developments. Curr. Pharm. Des. 2003, 9(15), 1177-1189.
16.(a) Yu, Z.; Sawkar, A. R.; Whalen, L. J.; Wong, C. H.; Kelly, J. W., Isofagomine- and 2,5-Anhydro-2,5-imino-D-glucitol-Based Glucocerebrosidase Pharmacological
Chaperones for Gaucher Disease Intervention. J. Med. Chem. 2007, 50, 94-100. (b) Dong, W.; Jespersen, T.; Bols, M.; Skrydstrup, T.; Sierks, M. R., Evaluation of Isofagomine and Its Derivatives As Potent Glycosidase Inhibitors. Biochemistry 1996, 35, 2788-2795.
17.Lieberman, R. L.; Wustman, B. A.; Huertas, P.; Powe Jr, A. C.; Pine, C. W.; Khanna, R.; Schlossmacher, M. G.; Ringe, D.; Petsko, G. A., Structure of acid -glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 2007, 3, 101-107.
18.(a) Therapeutic or prophylactic agent for diabetes, obesity, dyslipidemia or metabolic syndrome comprising benzylamine derivative or pharmaceutically acceptable acid. US 2011/0124733. (b) Treatment of Tay-Sachs and Sandhoff diseases by enhancing hexosaminidase activity. US 2007/0066543. (c) Method for the treatment of neurological disorders by enhancing the activity beta-glucocerebrosidase. US 2008/0009516.
19.Sawkar, A. R.; Haeze, W. D.; Kelly, J. W., Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gacher disease. Cell. Mol. Life. Sci. 2006, 63, 1179-1192.
20.Schulze, H.; Kolter, T.; Sandhoff, K., Principles of lysosomal memberane degradation cellular topology and biochemistry of lysosomal lipid degradation. Biochim. Biophys. Acta. 2009, 1793, 674-683.
21.Parenti, G., Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 2009, 1, 268-279.
22.(a) Fan, J. Q.; Ishii, S.; Asano, N.; Suzuki, Y., Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat. Med. 1999, 5, 112-115. (b) Fan, J. Q.; Ishii, S., Minireview: Active-site-specific chaperone therapy for Fabry disease. FEBS. J. 2007, 274, 4962-4971.
23.Nemoto, H.; Takamatsu, S.; Yamamoto, Y., An Improved and Practical Method for the Synthesis of Optically Active Diethyl Tartrate Dibenzyl Ether. J. Org. Chem. 1991, 56, 1322-1325.
24.Hubner, J.; Liebscher, J.; Patzel, M., Optically active nitroalkenes-synthesis, addition reactions and transformation into amino acids. Tetrahedron 2002, 58, 10485-10500.
25.Galley, G.; Hubner, J.; Anklam, S.; Jones, P. G.; Patzel, M., Diastereoselective Conjugate Addition and Cyclopropanation Reactions with Nitroalkenes Derived from (R)-2,3-Isopropylidine Glyceraldehyde. Tetrahedron Lett.1996, 35, 6307-6310.
26.(a) Nikolaides, N.; Ganem, B., An Improved Procedure for the Conversion of Amines to Alcohols at Low Temperature. J. Org. Chem. 1989, 54, 5996-5998. (b) Deechongkit, S.; You, S. L.; Kelly, J. W., Synthesis of All Nineteen Appropriately Protected Chiral -Hydroxy Acid Equivalents of the -Amino Acids for Boc Solid-Phase Depsi-Peptide Synthesis. Org. Lett. 2004, 6, 497-500.
27.(a) Ballini, R.; Petrini, M., Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction). Tetrahedron 2004, 60, 1017-1047. (b) Matt, C.; Wagner, A.; Mioskowski, C., Novel Transformation of Primary Nitroalkanes and Primary Alkyl Bromides to the Corresponding Carboxylic Acids. J. Org. Chem. 1997, 62, 234-235.
28.(a) Tsou, E. L.; Yeh, Y. T.; Liang, P. H.; Cheng, W. C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100. (b) Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T., Diastereoselective Hydrocyanation of Chiral Nitrones. Synthesis of Novel -(Hydroxyamino) Nitriles J. Org. Chem. 1996, 61, 9028-9032.
29.Marradi, M.; Cicchi, S.; Delso, J. I.; Rosi, L.; Teiero, T.; Merino, P.; Goti, A., Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Lett. 2005, 46, 1287-1290.
30.Steve, R., Nucleophilic Additions to Tetrahydropyridinium Salts. Applications to Alkaloid Syntheses. Acc. Chem. Res. 1984, 17, 289-296.
31.Chan, T. H.; Chang, Y. F.; Hsu, J. J.; Cheng, W.C., Straightforward Synthesis of Diverse 1-Deoxyazapyranosides via Stereocontrolled Nucleophilic Additions to Six-Membered Cyclic Nitrones. Eur. J. Org. Chem. 2010, 59, 5555–5559.
32.(a) Merino, P.; Tejero, T.; Revuelta, J.; Romero, P.; Cicchi, S.; Mannucci, V.; Brandi, A.; Goti, A., A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron: Asymmetry 2003, 14, 367-379. (b) Merino, P.; Delso, I.; Tejero, T.; Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A., Nucleophilic Additions to Cyclic Nitrones en Route to Iminocyclitols – Total Syntheses of DMDP, 6-deoxy-DMDP, DAB-1, CYB-3, Nectrisine, and Radicamine B. Eur. J .Org. Chem. 2008, 17, 2929-2947.