簡易檢索 / 詳目顯示

研究生: 蔡志偉
Tsai, Chih-Wei
論文名稱: C6胺甲基isofagomine分子群之合成及其生物活性之探討
Synthesis and biological evaluation of C6 aminomethyl isofagomine-based molecules
指導教授: 鄭偉杰
Cheng, Wei-Chieh
共同指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 136
中文關鍵詞: 亞胺醣抑制劑助疊小分子高雪氏症
外文關鍵詞: iminosugar, inhibitor, chaperone, Gaucher disease
相關次數: 點閱:83下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 亞胺醣如isofagomine和1-deoxynujirimycin (DNJ)等,是非常具有藥效潛力的分子,例如治療代謝疾病、抑制腫瘤生長和抑制病毒和細菌活性等。由於這些分子具有許多生物活性效果,其製備方法顯得非常重要。從化學結構的角度來看,亞胺醣被認為是模仿糖苷酶水解時的過渡態oxocarbonium ion。在本論文中,我們設計了一個新的合成路徑,使用普遍且容易改質的方法來製備新的骨架稱為 C6-aminomethyl hydroxymethyl piperidine diol(AHPD)。我們將AHPD library的分子進行葡萄糖苷水解酶抑制活性測試,發現亞胺醣衍生物A17與A76為非常好的抑制劑(at nanomolar level)。此外,合成出的新穎分子也應用在助疊小分子以治療高雪氏症(Gaucher disease)。經由細胞檢測(N370S)發現,亞胺醣衍生物B117約增加突變酵素活性2.5倍為相當具有潛力的小分子。

    Iminosugars such as isofagomine and 1-deoxynujirimycin (DNJ) have significant therapeutic potential for the treatment of metabolic diseases, inhibition of tumor metastasis and control infections of fungi and viruses. Due to their versatile biological activities, the preparation of them becomes very attractive and important. From the structural point of view, iminosugars might be thought as the transition state mimic of oxocarbonium-ion during the enzymatic hydrolysis of glycosidase. In this project, we have developed a new synthetic strategy to prepare new scaffolds called C6-aminomethyl hydroxymethyl piperidine diol (AHPD) with specific configuration via our general and flexible synthetic approach. These AHPD-based libraries were investigated for the inhibition of glycosidases, such as beta-glucocerebrosidase and several potent inhibitors were found at namomolar level. Besides, we also applied several AHPD-based molecules to treat N370S in fibroblasts (Gaucher disease) and these chemical chaperones increase the cellular activity around 2.5 fold.

    Abstract I Acknowledgement III Table of contents V Index of Figures VII Index of Tables IX Index of Schemes X Abbreviations XII Chapter 1. Introduction 1 1-1 Introduction of Iminosugars 1 1-1.1 Mechanism for retaining and inverting glycosidases 2 1-1.2 Transition state mimics of substrate 4 1-2 Synthesis and biological applications of Isofagomine 4 1-2.1 Gaucher disease 9 1-2.2 Treatment of Gaucher disease 10 1-3 Motivation 12 Chapter 2. Results and Discussion 13 2-1 General strategy of design new cores 13 2-1.1 Retrosynthesis analysis 14 2-1.2 Method A 14 2-1.2.1 The preparation of alpha,beta-unsaturated nitroalkene 10 14 2-1.3 Method B 18 2-1.4 Synthesis of cis-AHPD and trans- AHPD 20 2-1.4.1 Proposed mechanism for nucleophile attacking cyclic nitrone 26 2-1.4.2 Preparation of libraries 28 2-2 Inhibition assays against beta-glucocerebrosidase and chaperone effects 30 2-2.1 Computation 36 2-3 Conclusions 39 Chapter 3 Experimental Section 40 3-1 Biological assays 40 3-2 General experimental procedure 43 3-2.1 General procedure A for preparation of amide products (library A) 43 3-2.2 General procedure B for preparation of amide products (library B) 43 3-3 Procedures and experimental data 44 References 64 Appendix 70 Index of Figures Figure 1.1. Structures of NJ, DNJ, swainsonine, castanosperine, fagomine, Miglitol, Zevasca, and isofagomine 1 Figure 1.2. Common structural classes of iminosugars 2 Figure 1.3. Mechanism of retaining and inverting enzymatic hydrolysis 3 Figure 1.4. Transition state mimics of sugar-processing substrates 4 Figure 1.5. Schematic representation of the interactions 5 Figure 1.6. Various starting materials of isofagomine 5 Figure 1.7. Disease-related applications of Isofagomine-based molecules 9 Figure 2.1. (a) 1H-1H COSY of 3; (b) 1H-1H NOESY of 3 21 Figure 2.2. (a) 1H-1H COSY of 4; (b) 1H-1H NOESY of 4 23 Figure 2.3. (a) 1H-1H COSY of 26; (b) 1H-1H NOESY of 26 26 Figure 2.4. Inhibition percentages of A1~A80 against beta-glucosidase at 100 nM 30 Figure 2.5. Inhibition percentages of A81~A134 against beta-glucosidase at 100 nM 30 Figure 2.6. Structures of potent inhibitors with inhibition percentages (%) in A(1~134) at 100 nM 31 Figure 2.7. Structures of resynthesis inhibitors with their IC50 32 Figure 2.8. Chaperone effects of B1~B80 on cellular N370S GC activity at 1 M 33 Figure 2.9. Chaperone effects of B81~B134 on cellular N370S GC activity at 1 M 33 Figure 2.10. Chaperone effects of B81~B134 on cellular N370S GC activity at 1 M 33 Figure 2.11. Structures of A76, A81, A17 and A112 with their IC50 34 Figure 2.12. Structures of A76, A81, A17 and A112 with their IC50 34 Figure 2.13. The Lineweaver–Burk plots of (a)A17, (b)A76 and (c)A112 for the inhibition of human GCase. The increasing concentrations of substrate were used to determine the Ki values and the data were plotted as 1/v versus 1/[S] 35 Figure 2.14. Surface representation of GCase near the active site. (a) IFG-bound inh. (b) inh-like configuration in neutral. (c) Glucosylceramide-docked inh. Glucosylceramide has been modified by truncating its alkyl chains. (d) Schematic diagram of hydrogen bonding interactions involved in stabilizing IFG in the active site of GCase 36 Figure 2.15. Docking for (a) A76;(b) A81;(c) A17;(d) A112 37 Index of Tables Table 2.1. Preparation of 13 via Michael addition 16 Table 2.2. Preparation of alcohol 17 18 Index of Schemes Scheme 1.1. Synthesis of isofagomine 8 from Levoglucosan 6 Scheme 1.2. Synthesis of isofagomine 8 from butadiene monoxide 7 Scheme 1.3. Synthesis of isofagomine 8 from L-xylose 8 Scheme 2.1. General strategy of design new cores 13 Scheme 2.2. Retrosynthetic analysis of AHPD cores 14 Scheme 2.3 The preparation of alpha,beta-unsaturated nitroalkene 10 15 Scheme 2.4. Michael addition of 10 with Cuprate reagent 15 Scheme 2.5. Model of Michael addition of 10 with Cuprate reagent 16 Scheme 2.6. Preparation of piperidine 2 from 11 17 Scheme 2.7. Preparation of amine 16 from 11 18 Scheme 2.8. Mechanism of Nef reaction 19 Scheme 2.9. Preparation of 21 from 11 20 Scheme 2.10. Preparation of cis-AHPD 3 20 Scheme 2.11. The preparation of trans-AHPD 4 23 Scheme 2.12. The preparation of 5,6-trans piperidine 26 25 Scheme 2.13. Proposed mechanism for nucleophilic addition with TMSCN 27 Scheme 2.14. Proposed mechanism for nucleophilic addition with Grignard reagent 28 Scheme 2.15. Preparation of libraries 30 Scheme 3.1. Inhibition assay against beta-glucosidase 40

    1.(a) Paulsen, H., Carbohydrates Containing Nitrogen or Sulfur in the “Hemiacetal” Ring. Angew. Chem. Int. Engl. 1966, 5, 495-551. (b) Paulsen, H. and Todt, K., Monosaccharide mit stick stoffhaltigem Ring, XII. Uber Monosaccharide mit stickstoffhaltigem Siebenring. Chem. Ber. 1967, 100, 512-517.
    2.(a) Pearson, M. S. M.; Monique, M. A.; Fargeas, V.; Lebreton, J., Recent Advances in the Total Synthesis of Piperidine Azasugars. Eur. J. Chem. 2005, 2159-2191. (b) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J., Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron: Asymmetry 2000, 11, 1645-1680. (c) Pearson, W. H.; Hines, J. V., Total Syntheses of (+)-Australine and ()-7-Epialexine. J. Org. Chem. 2000, 65, 5785-5793. (d) Goti, A.; Merino, P., Synthesis of D-arabinose-derived polyhydroxylated pyrrolidine, indolizidine and pyrrolizidine alkaloids. Total synthesis of hyacinthacine A2. Tetrahedron 2010, 66, 1220-1227. (e) Tsou, E. L.; Chen, S. Y.; Yang, N. H.; Wang, S. C.; Cheng, T. R. R.; Cheng, W. C., Synthesis and biological evaluation of a 2-aryl polyhydroxylated pyrrolidine alkaloid-based library. Bioorganic & Medicinal Chemistry 2008, 16, 10198-10204. (f) Johnson, C. R.; Johns, B. A., Glycomimetics: A Versatile de Novo Synthesis of -1-C-Aryl-deoxymannojirimycin Analogues. J. Org. Chem. 1997, 62, 6046-6050.
    3.(a) Winchester, B.G., Iminosugars: from botanical curiosities to licensed drugs Tetrahedron: Asymmetry 2009, 20, 645-651. (b) Meloncelli, P. J., Gloster, T. M., Money, V. A., Tarling, C. A., Davies, G. J., Withers, S. G., Stick, R. V., D-Glucosylated Derivatives of Isofagomine and Noeuromycin and Their Potential as Inhibitors of -Glycoside Hydrolases. Aust. J. Chem. 2007, 60, 549-565. (c) Yang, Y.; Zheng, F.; Bols, M.; Marinesu, L. G.; Qing, F. L., Synthesis of monofluorinated isofagomine analogues and evaluation as glycosidase inhibitors. J. Fluorine Chem. 2011, 132, 838-845.
    4.Horne, G.; Wilson, F. X.; Tinsley, Jon.; Williams, D. H.; Storer, R., Iminosugars past, present and future: medicines for tomorrow. Drug Discovery Today 2011, 16, 107-118.
    5.(a) Zechel, D. L.; Withers, S. G., Glycosidase Mechanisms: Anatomy of a Finely Tuned Catalyst. Acc. Chem. Res. 2000, 33, 11-18. (b) Lillelund, V. H.; Jensen, H. H.; Liang X.; Bols, M., Recent Developments of Transition-State Analogue Glycosidase Inhibitors of Non-Natural Product Origin. Chem. Rev. 2002, 102, 515-553.
    6.(a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M., Isofagomine, a Potent, New Giycosidase Inhibitor. Angew. Chem. Int. Ed. Engl. 1994, 33 (17), 1778-1779. (b) Bols, M., 1-Aza Sugars, Apparent Transition State Analogues of Equatorial Glycoside Formation/ Cleavage. Acc. Chem. Res.1998, 31, 1-8.
    7.Varrot, A.; Tarling, Chris A.; Macdonald, J. M.; Stick, R. V.; Zechel, D. L.; Withers, S. G.; Davies, G. J., Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding. J. Am. Chem. Soc. 2003, 125, 7496-7497.
    8.Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y., 1-N-Iminosugars:  Potent and Selective Inhibitors of β-Glycosidases. J. Am. Chem. Soc. 1998, 120, 3007-3018.
    9.Andersch, J.; Bols, M., Efficient Synthesis of Isofagomine and Noeuromycin. Eur. J .Org. Chem. 2001, 7, 3744-3747.
    10.Pandey, G.; Kapur, M., A general strategy towards the synthesis of 1-N-iminosugar type glycosidase inhibitors: demonstration by the synthesis of D- as well as L-glucose type iminosugars (isofagomines). Tetrahedron Lett. 2000, 41, 8821-8824.
    11.Hansen, S. U.; Bols, M., Synthesis of (±)-isofagomine and its stereoisomers from arecoline. J. Chem. Soc., Perkin Trans. 2000, 1, 911-915.
    12.Zhao, G.; Deo, U. C.; Ganem, B., Selective Fowler Reductions: Asymmetric Total Syntheses of Isofagomine and Other 1-Azasugars from Methyl Nicotinate. Org. Lett. 2001, 3, 201-203.
    13.Hidekazu, O.; Yukiko M.; Hiroki, T., New Route to Diverse 1-Azasugars from N-Boc-5-hydroxy-3-piperidene as a Common Building Block. J. Org. Chem. 2005, 70, 5207-5214.
    14.Zhu, X.; Sheth, K. A.; Li, S.; Chang , H. H.; Fan, J. Q., Rational Design and Synthesis of Highly Potent -Glucocerebrosidase Inhibitors. Angew. Chem. Int. Ed. 2005, 44, 7450 -7453
    15.Somsak, L.; Nagy, V.; Hadady, Z.; Docsa, Z.; Gergely, P., Glucose Analog Inhibitors of Glycogen Phosphorylases as Potential Anitdiabetic Agent: Recent Developments. Curr. Pharm. Des. 2003, 9(15), 1177-1189.
    16.(a) Yu, Z.; Sawkar, A. R.; Whalen, L. J.; Wong, C. H.; Kelly, J. W., Isofagomine- and 2,5-Anhydro-2,5-imino-D-glucitol-Based Glucocerebrosidase Pharmacological
    Chaperones for Gaucher Disease Intervention. J. Med. Chem. 2007, 50, 94-100. (b) Dong, W.; Jespersen, T.; Bols, M.; Skrydstrup, T.; Sierks, M. R., Evaluation of Isofagomine and Its Derivatives As Potent Glycosidase Inhibitors. Biochemistry 1996, 35, 2788-2795.
    17.Lieberman, R. L.; Wustman, B. A.; Huertas, P.; Powe Jr, A. C.; Pine, C. W.; Khanna, R.; Schlossmacher, M. G.; Ringe, D.; Petsko, G. A., Structure of acid -glucosidase with pharmacological chaperone provides insight into Gaucher disease. Nat. Chem. Biol. 2007, 3, 101-107.
    18.(a) Therapeutic or prophylactic agent for diabetes, obesity, dyslipidemia or metabolic syndrome comprising benzylamine derivative or pharmaceutically acceptable acid. US 2011/0124733. (b) Treatment of Tay-Sachs and Sandhoff diseases by enhancing hexosaminidase activity. US 2007/0066543. (c) Method for the treatment of neurological disorders by enhancing the activity beta-glucocerebrosidase. US 2008/0009516.
    19.Sawkar, A. R.; Haeze, W. D.; Kelly, J. W., Therapeutic strategies to ameliorate lysosomal storage disorders-a focus on Gacher disease. Cell. Mol. Life. Sci. 2006, 63, 1179-1192.
    20.Schulze, H.; Kolter, T.; Sandhoff, K., Principles of lysosomal memberane degradation cellular topology and biochemistry of lysosomal lipid degradation. Biochim. Biophys. Acta. 2009, 1793, 674-683.
    21.Parenti, G., Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol. Med. 2009, 1, 268-279.
    22.(a) Fan, J. Q.; Ishii, S.; Asano, N.; Suzuki, Y., Accelerated transport and maturation of lysosomal alpha-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat. Med. 1999, 5, 112-115. (b) Fan, J. Q.; Ishii, S., Minireview: Active-site-specific chaperone therapy for Fabry disease. FEBS. J. 2007, 274, 4962-4971.
    23.Nemoto, H.; Takamatsu, S.; Yamamoto, Y., An Improved and Practical Method for the Synthesis of Optically Active Diethyl Tartrate Dibenzyl Ether. J. Org. Chem. 1991, 56, 1322-1325.
    24.Hubner, J.; Liebscher, J.; Patzel, M., Optically active nitroalkenes-synthesis, addition reactions and transformation into amino acids. Tetrahedron 2002, 58, 10485-10500.
    25.Galley, G.; Hubner, J.; Anklam, S.; Jones, P. G.; Patzel, M., Diastereoselective Conjugate Addition and Cyclopropanation Reactions with Nitroalkenes Derived from (R)-2,3-Isopropylidine Glyceraldehyde. Tetrahedron Lett.1996, 35, 6307-6310.
    26.(a) Nikolaides, N.; Ganem, B., An Improved Procedure for the Conversion of Amines to Alcohols at Low Temperature. J. Org. Chem. 1989, 54, 5996-5998. (b) Deechongkit, S.; You, S. L.; Kelly, J. W., Synthesis of All Nineteen Appropriately Protected Chiral -Hydroxy Acid Equivalents of the -Amino Acids for Boc Solid-Phase Depsi-Peptide Synthesis. Org. Lett. 2004, 6, 497-500.
    27.(a) Ballini, R.; Petrini, M., Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction). Tetrahedron 2004, 60, 1017-1047. (b) Matt, C.; Wagner, A.; Mioskowski, C., Novel Transformation of Primary Nitroalkanes and Primary Alkyl Bromides to the Corresponding Carboxylic Acids. J. Org. Chem. 1997, 62, 234-235.
    28.(a) Tsou, E. L.; Yeh, Y. T.; Liang, P. H.; Cheng, W. C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93-100. (b) Merino, P.; Lanaspa, A.; Merchan, F. L.; Tejero, T., Diastereoselective Hydrocyanation of Chiral Nitrones. Synthesis of Novel -(Hydroxyamino) Nitriles J. Org. Chem. 1996, 61, 9028-9032.
    29.Marradi, M.; Cicchi, S.; Delso, J. I.; Rosi, L.; Teiero, T.; Merino, P.; Goti, A., Straightforward synthesis of enantiopure 2-aminomethyl and 2-hydroxymethyl pyrrolidines with complete stereocontrol. Tetrahedron Lett. 2005, 46, 1287-1290.
    30.Steve, R., Nucleophilic Additions to Tetrahydropyridinium Salts. Applications to Alkaloid Syntheses. Acc. Chem. Res. 1984, 17, 289-296.
    31.Chan, T. H.; Chang, Y. F.; Hsu, J. J.; Cheng, W.C., Straightforward Synthesis of Diverse 1-Deoxyazapyranosides via Stereocontrolled Nucleophilic Additions to Six-Membered Cyclic Nitrones. Eur. J. Org. Chem. 2010, 59, 5555–5559.
    32.(a) Merino, P.; Tejero, T.; Revuelta, J.; Romero, P.; Cicchi, S.; Mannucci, V.; Brandi, A.; Goti, A., A comparative study of the stereoselective addition of trimethylsilyl cyanide and diethylaluminum cyanide to chiral cyclic nitrones. Tetrahedron: Asymmetry 2003, 14, 367-379. (b) Merino, P.; Delso, I.; Tejero, T.; Cardona, F.; Marradi, M.; Faggi, E.; Parmeggiani, C.; Goti, A., Nucleophilic Additions to Cyclic Nitrones en Route to Iminocyclitols – Total Syntheses of DMDP, 6-deoxy-DMDP, DAB-1, CYB-3, Nectrisine, and Radicamine B. Eur. J .Org. Chem. 2008, 17, 2929-2947.

    下載圖示 校內:2015-01-20公開
    校外:2015-01-20公開
    QR CODE