| 研究生: |
陳冠豪 Chen, Guan-Hao |
|---|---|
| 論文名稱: |
不同養護條件所製成鹼激發玻璃泡沫材料之研究 Alkali-Activated Glass Foams Made under Different Curing Process |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 廢容器玻璃粉 、鹼激發 、無機聚合 、預成形泡沫 、高溫高壓養護 |
| 外文關鍵詞: | waste container glass power, alkali-activation, inorganic binder, preformed air bubble, high temperature and pressure process |
| 相關次數: | 點閱:36 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現有輕質泡沫材料大多使用卜特蘭水泥作為主要膠結材,然而,水泥生產過程高耗能且高二氧化碳排放量,對環境生態造成嚴重衝擊,鹼激發膠結材之製造過程屬低耗能與低汙染,根據鹼激發反應機制,凡富含鋁矽酸鹽之礦物材料皆可作為原料,經研磨後之廢容器玻璃粉末,即富含二氧化矽符合鹼激發膠結材原料之需求,可取代水泥製成泡沫材料。由於容器玻璃廢棄後大多採掩埋方式處理,除大量佔據埋地空間,同時造成環境生態汙染,此外近年容器玻璃回收比例雖有所提升,但缺乏材料資源化再利用管道,若能將其作為鹼激發膠結材原料,開發一具高經濟性之新型輕質泡沫材,將可達成減用卜特蘭水泥與有效消耗廢容器玻璃之雙重目的。本研究以經研磨之廢容器玻璃粉為原料,使用僅含氫氧化鈉之鹼活化液,依不同設計相對密度,於拌合時添加適量預成形泡沫於鹼激發玻璃膠結材中,選用適宜之養護製程方式,以期所製成輕質泡沫材料試體具有良好抗壓強度,同時,為降低製造成本將減低鹼活化液所需用量,並縮短製造養護時程,最終,藉由試驗結果相互比較,以獲得製作鹼激發玻璃泡沫材料之最佳配比參數與養護條件,評估所製成鹼激發玻璃泡沫材料之物理與力學性質,檢核其是否符合實務應用所需之標準,以及取代卜特蘭水泥泡沫材料之可行性。
Portland cement slurry is typically used as a binder in the production of lightweight foams. However, the manufacturing process of Portland cement is high energy consumption and results in the emission of carbon dioxide, causing a serious impact on the earth environment and ecology. The manufacturing process of alkali-activated inorganic binders, made from materials with rich aluminosilicate, is less energy consumption and more environmentally friendly. Waste container glasses are mostly disposed of by burial and thus not only occupy a lot of landfill space but also cause environmental and ecological pollution. Hence, a novel construction material made from waste container glasses should be developed to reduce their pollution and to replace Portland cement as binder in concrete. Waste container glasses powders composed of rich silica can be used as raw materials to produce alkali-activated binders and foams. In the study, waste container glass powders were mixed with the alkaline activator containing only sodium hydroxide. As a result, the cost of the resulting alkali-activated glass binders and foams is lower and can be utilized to replace cementitious ones. Different amounts of pre-formed air bubbles were weighed and then mixed completely with alkali-activated glass binders to produce slurry foams with various relative densities. The slurry foams were then cured in a suitable maintenance process to shorten their curing duration and to reach good compressive strength. The compressive strengths of alkali-activated glass foams were tested mechanically and then compared to determine the optimal proportions of constituent materials and curing process conditions. Also, the physical and mechanical properties of the alkali-activated glass foams were evaluated to check if they satisfy the required standards for practical applications and the replacement of Portland cement foams is feasible.
[1] 馮炳勳,「台灣水泥業因應二氧化碳排放減量策略之研究」,國立成功大學資源工程研究所,博士論文,2006。
[2] 行政院環境保護署,「環境資源資料庫」,2020。
[3] 陳彥鳴,「廢玻璃資源化再利用技術及潛勢分析」,國立台北科技大學環境規劃與管理研究所,碩士論文,2003。
[4] 王宣棫,「TFT-LCD廢玻璃應用於營建板材之可行性研究」,國立成功大學土木工程研究所,碩士論文,2018。
[5] 楊志強、李銘智、楊宗叡,「高壓蒸氣養護輕質氣泡混凝土隔間產製與施工」,營建知訊,447期,2020。
[6] 趙駿穎,「廢玻璃鹼激發膠結材之研究」,國立成功大學土木工程研究所,碩士論文,2002。
[7] 許偉哲,「TFT-LCD廢玻璃鹼激發膠結材之物理性質」,國立成功大學土木工程研究所,碩士論文,2009。
[8] 許志雄、王木琴、許蕙如,「玻璃的藝術與科技」,科學發展,406期,2006。
[9] 劉國雄、鄭晃忠、李勝雄、林樹均、葉均蔚,「工程材料科學」修訂版,全華圖書,2000。
[10] 陳衿良,「P_2 O_2-Na_2 O-CuO系列低溫無鉛玻璃接合性質研究」,國立交通大學機械工程研究所,碩士論文,2007。
[11] 張添晉、王愫懃,「廢玻璃與廢燈管資源回收循環」,中技社2010年環境與能源研討會,2010。
[12] Buchwald, A., Vanooteghem, M., Gruyaert, E., Hilbig, H., Belie, N.D., “Purdocement: application of alkali-activated slag cement in Belgium in the 1950s”, Materials and Structures, 48, 501-511, 2015.
[13] Glukhovsky, V.D., “Soil silicate-based products and structures”, Gosstroiizdat Publish, Kiev, USSR, 1957.
[14] Malinowski, R., “Concretes And Mortars In Ancient Aqueducts”, Concrete International, 1.01, 66-67, 1979.
[15] Campbell, D.H., Folk, R.L., “Ancient Egyption Pyramids—Concrete or Rock”, Concrete International, 13, 8, 28, 30-29, 1991.
[16] Davidovits, J., “Geopolymers Inorganic Polymeric New Materials”, Journal of Thermal Analysis and Calorimetry, vol.37, 8, 1633-1656, 1991.
[17] Provis, J.L, Van Deventer, J.S.J., “Alkali activated materials: state-of-the-art report”, RILEM TC 224-AAM, vol. 13, 2013.
[18] Fernández-Jiménez, A., Palomo, A., “Characterisation of fly ashes. Potential reactivity as alkaline cements”, FUEL, vol. 82, 18, 2259-2265, 2003.
[19] Buchwald, A., Hohmann, M., Posern, K., Brendler, E., “The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders”, Applied Clay Science, vol. 46, 3, 300-304, 2009.
[20] Potgieter-Vermaak, S.S., Potgieter, J.H., “Metakaolin as an Extender in South African Cement”, Journal of Materials in Civil Engineering, vol. 18, 4 , 2006.
[21] Shi, C., Li, Y., “Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement”, Cement and Concrete Research, vol. 19, 4, 527-533, 1989.
[22] Weng, L., Sagoe-Crentsil, K., Brown, T., Song, S., “Effects of aluminates on the formation of geopolymers”, Materials Science and Engineering: B, vol. 117, 2, 163-168, 2005.
[23] Provis, J.L., “4 - Activating solution chemistry for geopolymers”, Geopolymers : Structures, Processing, Properties and Industrial Applications Woodhead Publishing Series in Civil and Structural Engineering, 50-71,2009.
[24] Wang, S.D., Scrivener, K.L., Pratt, P.L., “Factors affecting the strength of alkali-activated slag”, Cement and Concrete Research, vol. 24, 6, 1033-1043, 1994.
[25] 戴詩潔,「高嶺石鋁矽酸鹽聚合材料之研究」,國立台北科技大學材料及資源工程研究所,碩士論文,2005。
[26] Oderji, S.Y., Chen, B., Ahmad, M.R., Shah, S.F.A., “Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators”, Journal of Cleaner Production, vol. 225, 1-10, 2019.
[27] Zhang, Q., Ji, T., Yang, Z., Wang, C., Wu, H.C, “Influence of different activators on microstructure and strength of alkali-activated nickel slag cementitious materials”, Construction and Building Materials, vol. 235, 117449, 2020.
[28] 陳泰安,「陳化與養護製程對鹼激發玻璃無機膠結材性質之影響」,國立成功大學土木工程研究所,博士論文,2016。
[29] 陳志賢,「含矽質廢棄物之無機聚合物」,國立成功大學土木工程研究所,博士論文,2009。
[30] Talling, B., “Effect of Curing Conditions on Alkali-Activated Slags”, Symposium Paper, vol. 114, 1485-1500, 1989.
[31] Andersson, R., Gram, H.E., Malolipszy, J., “Alkali-activated slag”, Swedish Cement and Concrete Research Institute, Stockholm, 104, 1988.
[32] Cioffi, R., Maffucci, L., Santoro, L., “Optimization of geopolymer synthesis by calcination and polycondensation of a kaolinitic residue”, Resources, Conservation and Recycling, vol. 40, 1, 27-38, 2003.
[33] 胡佩庸、王木琴、王承遇,「儀器玻璃」,台灣復文興業股份有限公司,1995。
[34] 金左培,「鹼激發玻璃材料」,房材與應用,Vol. 31 No.2,pp.19-20,2003。
[35] 許皓翔,「TFT-LCD廢玻璃以鹼激發方式製成防火材料之研究」,國立宜蘭大學環境工程研究所,碩士論文,2012。
[36] 賴琇瑩,「鹼激發廢玻璃膠結材之常溫配比研究」,國立成功大學土木工程研究所,碩士論文,2010。
[37] 柯昌君、龔平,「蒸壓條件下廢玻璃的水熱特性研究」,長江大學學報A (自然科學版),Vol.3 No.2,pp.95-99,2006。
[38] 林宓璇,「高溫高壓製程對鹼激發玻璃膠結材性質之影響」,國立成功大學土木工程研究所,碩士論文,2020。
[39] 林宏飛、山崎仲道、許淑惠,「水熱熱壓條件下玻璃水化過程的研究」,玻璃與陶瓷,Vol. 29 NO. 5,2001。
[40] 閆振甲、何豔君,「泡沫混凝土實用生產技術」,化學工業出版社,2006。
[41] 谷亞新、王延釗、王小萌,「不同工藝泡沫混凝土的研究進展」,,混凝土,Vol.12,pp.148-152,2013。
[42] 楊昆憲,「含矽質廢棄物之發泡無機聚合物」,國立成功大學土木工程研究所,博士論文,2015。
[43] 王怡雯,「泡沫無機聚合物之物理性質」,國立成功大學土木工程研究所,碩士論文,2009。
[44] 古道,「河川淤泥應用於泡沫與改質無機聚合物之研究」,國立成功大學土木工程研究所,碩士論文,2018。
[45] ACI 517.2R, “Accelerated Curing of Concrete at Atmospheric Pressure - State of the Art”, 1992.
[46] CNS 11271, “Method of Test for Density of Hydraulic Cemen”, 1985.
[47] CNS 2924, “Method of Test for Fineness of Portland Cement (by Air Permeability Apparatus)”, 1984.
[48] CNS 1010, “Method of Test for Compressive Strength of Hydraulic Cement Mortars (Using 50mm or 2 in. Cube Specimens)”, 1993.
[49] ASTM C642-13, “Standard Test Method for Density, Absorption, and Voids in Hardened Concrete”, 2013.
[50] Gibson, I.J., Ashby, M.F., “The mechanics of three-dimensional cellular materials”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 382, 43-59, 1982.