簡易檢索 / 詳目顯示

研究生: 顏翊雯
Yen, Yi-Wen
論文名稱: 利用奈米球微影製作金奈米粒子陣列模板於表面增強拉曼散射的應用
Application of Nanosphere Lithography to Fabricate Gold Nanoparticles Array Substrates for Surface-enhanced Raman Scattering
指導教授: 李介仁
Li, Jie-Ren
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 87
中文關鍵詞: 表面增強拉曼散射奈米球微影術奈米粒子陣列原子力顯微鏡
外文關鍵詞: SERS, particle lithography, nanoparticle array, AFM
相關次數: 點閱:128下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來應用於表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)上的技術發展快速,但是有很多的技術做出來的基板是需要昂貴的儀器才能夠完成的,因此,如何在低成本下,做出一個簡單的基板並且可以應用在SERS 上是很重要的。本研究是利用一些簡單、且低成本的方法做出一個具有奈米結構陣列的基板,其中包含了金奈米粒子的合成、奈米球微影技術、有機矽烷表面化學…等等,而在本實驗中合成了球形金奈米粒子、立方體形金奈米粒子以及星形金奈米粒子等三種不同形狀的金奈米粒子來製作金奈米粒子陣列。此外,還可以利用不同大小的奈米球來改變陣列的週期,之後再利用一些儀器來對製作出來的金奈米粒子和基板進行檢驗,包含了紫外可見光光譜儀、掃描式電子顯微鏡、穿透式電子顯微鏡、原子力顯微鏡。透過這些儀器的檢驗證明在本研究中利用的簡單方法可以成功的製作出不同週期大小的奈米結構陣列的基板,之後再將做出來的基板利用拉曼光譜儀進行鑑定,證明此基板可以有效的增強分子的拉曼訊號。

    Surface-enhanced Raman scattering (SERS) has been developed rapidly for multidisciplinary applications in recent years. However, it is significant to make the
    efforts to design a fabrication process for simple and low-cost SERS substrates. SERS substrates fabricated using relatively common and inexpensive approaches still remains challenging. In this study, a convenient method based on combination of the synthesis of gold nanoparticles, nanosphere lithography, organosilane
    chemistry was developed to produce nanostructure array substrates. Besides, three types of gold nanoparticle with different shapes, including Au nanospheres, Au
    nanocubes and Au nanostars, can be used to fabricate nanoparticle array substrates. Different size of nanospheres as templates determines the array periodicity of organosilane nanostructures which facilitate selective adsorption of gold nanoparticles. UV-Visible spectroscopy, scanning electron microscopy (SEM),
    transmission electron microscopy (TEM) and atomic force microscopy (AFM) enable characterization of gold nanoparticle arrays. From the results, we can successfully produce different periodic nanostructure array substrates by simple fabrication process. Such substrates can be proved to enhance signal of the SERS.

    目錄 ....................................................................................................................................... 1 表目錄 ................................................................................................................................... 3 圖目錄 ................................................................................................................................... 3 第一章、緒論 ....................................................................................................................... 8 1.1 微奈米製程介紹 ..................................................................................................... 8 1.2 有機矽烷自組裝 ................................................................................................... 12 1.3 原子力顯微鏡 ....................................................................................................... 14 1.4 表面增強拉曼散射 ............................................................................................... 16 第二章、探討不同取代基數量之長碳鏈矽烷於表面自組裝的現象 ............................. 18 2.1 前言 ....................................................................................................................... 18 2.2 實驗部分 ............................................................................................................... 19 2.2.1 儀器 ............................................................................................................ 19 2.2.2 藥品 ............................................................................................................ 19 2.2.3 藥品配置 .................................................................................................... 20 2.2.4 步驟 ............................................................................................................ 21 2.3 結果與討論 ........................................................................................................... 24 2.3.1 探討溶劑對於OTS 與ODCS 於模板間自組裝的影響 .......................... 24 2.3.2 分析ODCS 於不同奈米球模板與基材上的自組裝現象 ....................... 37 2.3.3 探討ODCS 奈米洞被AHAP3 填入後之表面形貌改變 ......................... 39 2.3.4 FT-IR 光譜對於OTS 與ODCS 自組裝膜排列之鑑定 ........................... 48 2.4 結論 ....................................................................................................................... 49 第三章、利用奈米球微影製作金奈米粒子陣列模板於表面增強拉曼散射的應用 ..... 50 3.1 前言 ....................................................................................................................... 50 3.2 實驗部分 ............................................................................................................... 53 3.2.1 儀器 ............................................................................................................ 53 3.2.2 藥品 ............................................................................................................ 54 3.2.3 藥品配置 .................................................................................................... 55 3.2.4 步驟 ............................................................................................................ 56 3.3 結果與討論 ........................................................................................................... 60 3.3.1 不同形狀金奈米粒子之鑑定 .................................................................... 60 3.3.2 利用奈米球微影術製作OTS 奈米洞陣列 ............................................... 62 3.3.3 金奈米粒子選擇性吸附於OTS 奈米洞陣列 ........................................... 67 3.3.4 金奈米粒子陣列於SERS 上之應用 ......................................................... 79 3.4 結論 ....................................................................................................................... 83 參考資料 ............................................................................................................................. 84

    1. Gondosiswanto, R.; Gunawan, C. A.; Hibbert, D. B.; Harper, J. B.; Zhao, C.,
    Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for
    “Membrane-less” and “Spill-less” Gas Sensors. ACS Applied Materials & Interfaces
    2016, 8 (45), 31368-31374.
    2. Khang, D.-Y.; Kang, H.; Kim, T.-I.; Lee, H. H., Low-pressure nanoimprint
    lithography. Nano Letters 2004, 4 (4), 633-637.
    3. Image from Tech-FAQ. http://www.tech-faq.com/photolithography.html.
    4. Colson, P.; Henrist, C.; Cloots, R., Nanosphere lithography: a powerful method for the
    controlled manufacturing of nanomaterials. Journal of Nanomaterials 2013, 2013, 21.
    5. Image from ResearchGate_Nanopatterned Surfaces for Biomedical Applications.
    https://www.researchgate.net/publication/221909895.
    6. Image from The University of Sheffield. https://www.sheffield.ac.uk/ebl/patterning.
    7. Reyntjens, S.; Puers, R., A review of focused ion beam applications in microsystem
    technology. Journal of Micromechanics and Microengineering 2001, 11 (4), 287.
    8. Image from Fibics Incorporated.
    http://www.fibics.com/fib/application/nanofabrication-and-microfabrication/34/.
    9. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold
    surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
    10. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of
    oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical
    Society 1980, 102 (1), 92-98.
    11. Li, J.-R.; Garno, J. C., Elucidating the role of surface hydrolysis in preparing
    organosilane nanostructures via particle lithography. Nano Letters 2008, 8 (7),
    1916-1922.
    12. Finklea, H.; Robinson, L.; Blackburn, A.; Richter, B.; Allara, D.; Bright, T.,
    Formation of an organized monolayer by solution adsorption of
    octadecyltrichlorosilane on gold: electrochemical properties and structural
    characterization. Langmuir 1986, 2 (2), 239-244.
    13. Stevens, M. J., Thoughts on the structure of alkylsilane monolayers. Langmuir 1999,
    15 (8), 2773-2778.
    14. Maoz, R.; Sagiv, J., On the formation and structure of self-assembling monolayers. I.
    A comparative atr-wettability study of Langmuir—Blodgett and adsorbed films on flat
    substrates and glass microbeads. Journal of Colloid and Interface Science 1984, 100
    (2), 465-496.
    15. Cohen, S. R.; Naaman, R.; Sagiv, J., Thermally induced disorder in organized organicmonolayers on solid substrates. The Journal of Physical Chemistry 1986, 90 (14),
    3054-3056.
    16. Tripp, C.; Hair, M., An infrared study of the reaction of octadecyltrichlorosilane with
    silica. Langmuir 1992, 8 (4), 1120-1126.
    17. Image from WIKIMEDIA COMMONS.
    https://commons.wikimedia.org/wiki/File:AFM_schematic_(EN).svg.
    18. Image from Bone Biology and Mechanics Lab.
    http://www.iupui.edu/~bbml/afmintro.shtml.
    19. Image from BWTEK. http://bwtek.com/raman-theory-of-raman-scattering.
    20. Image from BIG Physics for small Science ─ FromTheLabBench.
    http://www.scilogs.com/from_the_lab_bench/big-physics-for-small-science/.
    21. Brownfield, A. L.; Causey, C. P.; Mullen, T. J., Influence of solvent on
    octadecyltrichlorosilane nanostructures fabricated using particle lithography. The
    Journal of Physical Chemistry C 2015, 119 (22), 12455-12463.
    22. Smith, M. B.; Efimenko, K.; Fischer, D. A.; Lappi, S. E.; Kilpatrick, P. K.; Genzer, J.,
    Study of the packing density and molecular orientation of bimolecular self-assembled
    monolayers of aromatic and aliphatic organosilanes on silica. Langmuir 2007, 23 (2),
    673-683.
    23. Cazes, J., Encyclopedia of Chromatography 2004 Update Supplement. CRC press:
    2004.
    24. Zhu, M.; Lerum, M. Z.; Chen, W., How to prepare reproducible, homogeneous, and
    hydrolytically stable aminosilane-derived layers on silica. Langmuir 2011, 28 (1),
    416-423.
    25. Jones, R. L.; Pearsall, N. C.; Batteas, J. D., Disorder in alkylsilane monolayers
    assembled on surfaces with nanoscopic curvature. The Journal of Physical Chemistry
    C 2009, 113 (11), 4507-4514.
    26. Sambasivan, S.; Hsieh, S.; Fischer, D. A.; Hsu, S. M., Effect of self-assembled
    monolayer film order on nanofriction. Journal of Vacuum Science & Technology A:
    Vacuum, Surfaces, and Films 2006, 24 (4), 1484-1488.
    27. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy
    and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    28. Alvarez-Puebla, R.; Cui, B.; Bravo-Vasquez, J.-P.; Veres, T.; Fenniri, H.,
    Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. The
    Journal of Physical Chemistry C 2007, 111 (18), 6720-6723.
    29. Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H.; Xie,
    Y.-H., Label-free SERS selective detection of dopamine and serotonin using
    graphene-Au nanopyramid heterostructure. Analytical Chemistry 2015, 87 (20),10255-10261.
    30. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and
    characterization of Au colloid monolayers. Analytical Chemistry 1995, 67 (4),
    735-743.
    31. Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Seed-Mediated Synthesis of Gold Nanocrystals
    with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic
    Dodecahedral Structures. Langmuir 2010, 26 (14), 12307-12313.
    32. Chandra, K.; Culver, K. S.; Werner, S. E.; Lee, R. C.; Odom, T. W., Manipulating the
    anisotropic structure of gold nanostars using good’s buffers. Chemistry of Materials
    2016, 28 (18), 6763-6769.
    33. Yu, C.; Varghese, L.; Irudayaraj, J., Surface modification of cetyltrimethylammonium
    bromide-capped gold nanorods to make molecular probes. Langmuir 2007, 23 (17),
    9114-9119.
    34. Lee, D.; Yoon, S., Gold nanocube–nanosphere dimers: Preparation, plasmon coupling,
    and surface-enhanced Raman scattering. The Journal of Physical Chemistry C 2015,
    119 (14), 7873-7882.
    35. Nikoobakht, B.; El-Sayed, M. A., Evidence for bilayer assembly of cationic
    surfactants on the surface of gold nanorods. Langmuir 2001, 17 (20), 6368-6374.
    36. Sau, T. K.; Murphy, C. J., Self-assembly patterns formed upon solvent evaporation of
    aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various
    shapes. Langmuir 2005, 21 (7), 2923-2929.
    37. Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.;
    Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J., The many faces of gold
    nanorods. The Journal of Physical Chemistry Letters 2010, 1 (19), 2867-2875.
    38. Liu, H.; Xu, Y.; Qin, Y.; Sanderson, W.; Crowley, D.; Turner, C. H.; Bao, Y.,
    Ligand-directed formation of gold tetrapod nanostructures. The Journal of Physical
    Chemistry C 2013, 117 (33), 17143-17150.
    39. Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic
    understanding of surface plasmon assisted catalysis on a single particle: cyclic redox
    of 4-aminothiophenol. Scientific Reports 2013, 3, 2997.
    40. Martín, A.; Pescaglini, A.; Schopf, C.; Scardaci, V.; Coull, R.; Byrne, L.; Iacopino, D.,
    Surface-enhanced Raman scattering of 4-aminobenzenethiol on Au nanorod ordered
    arrays. The Journal of Physical Chemistry C 2014, 118 (24), 13260-13267.
    41. Kanipe, K. N.; Chidester, P. P.; Stucky, G. D.; Moskovits, M., Large format
    surface-enhanced Raman spectroscopy substrate optimized for enhancement and
    uniformity. ACS Nano 2016, 10 (8), 7566-7571.
    42. Ye, M.; Wei, Z.; Hu, F.; Wang, J.; Ge, G.; Hu, Z.; Shao, M.; Lee, S.-T.; Liu, J., Fastassembling microarrays of superparamagnetic Fe 3 O 4@ Au nanoparticle clusters as
    reproducible substrates for surface-enhanced Raman scattering. Nanoscale 2015, 7
    (32), 13427-13437.
    43. Pasquale, A. J.; Reinhard, B. r. M.; Dal Negro, L., Engineering photonic–plasmonic
    coupling in metal nanoparticle necklaces. ACS Nano 2011, 5 (8), 6578-6585.
    44. Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S., Nanoparticle cluster arrays
    for high-performance SERS through directed self-assembly on flat substrates and on
    optical fibers. ACS Nano 2012, 6 (3), 2056-2070.

    下載圖示 校內:2021-07-30公開
    校外:2021-07-30公開
    QR CODE