| 研究生: |
顏翊雯 Yen, Yi-Wen |
|---|---|
| 論文名稱: |
利用奈米球微影製作金奈米粒子陣列模板於表面增強拉曼散射的應用 Application of Nanosphere Lithography to Fabricate Gold Nanoparticles Array Substrates for Surface-enhanced Raman Scattering |
| 指導教授: |
李介仁
Li, Jie-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 表面增強拉曼散射 、奈米球微影術 、奈米粒子陣列 、原子力顯微鏡 |
| 外文關鍵詞: | SERS, particle lithography, nanoparticle array, AFM |
| 相關次數: | 點閱:128 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來應用於表面增強拉曼散射(Surface-Enhanced Raman Scattering, SERS)上的技術發展快速,但是有很多的技術做出來的基板是需要昂貴的儀器才能夠完成的,因此,如何在低成本下,做出一個簡單的基板並且可以應用在SERS 上是很重要的。本研究是利用一些簡單、且低成本的方法做出一個具有奈米結構陣列的基板,其中包含了金奈米粒子的合成、奈米球微影技術、有機矽烷表面化學…等等,而在本實驗中合成了球形金奈米粒子、立方體形金奈米粒子以及星形金奈米粒子等三種不同形狀的金奈米粒子來製作金奈米粒子陣列。此外,還可以利用不同大小的奈米球來改變陣列的週期,之後再利用一些儀器來對製作出來的金奈米粒子和基板進行檢驗,包含了紫外可見光光譜儀、掃描式電子顯微鏡、穿透式電子顯微鏡、原子力顯微鏡。透過這些儀器的檢驗證明在本研究中利用的簡單方法可以成功的製作出不同週期大小的奈米結構陣列的基板,之後再將做出來的基板利用拉曼光譜儀進行鑑定,證明此基板可以有效的增強分子的拉曼訊號。
Surface-enhanced Raman scattering (SERS) has been developed rapidly for multidisciplinary applications in recent years. However, it is significant to make the
efforts to design a fabrication process for simple and low-cost SERS substrates. SERS substrates fabricated using relatively common and inexpensive approaches still remains challenging. In this study, a convenient method based on combination of the synthesis of gold nanoparticles, nanosphere lithography, organosilane
chemistry was developed to produce nanostructure array substrates. Besides, three types of gold nanoparticle with different shapes, including Au nanospheres, Au
nanocubes and Au nanostars, can be used to fabricate nanoparticle array substrates. Different size of nanospheres as templates determines the array periodicity of organosilane nanostructures which facilitate selective adsorption of gold nanoparticles. UV-Visible spectroscopy, scanning electron microscopy (SEM),
transmission electron microscopy (TEM) and atomic force microscopy (AFM) enable characterization of gold nanoparticle arrays. From the results, we can successfully produce different periodic nanostructure array substrates by simple fabrication process. Such substrates can be proved to enhance signal of the SERS.
1. Gondosiswanto, R.; Gunawan, C. A.; Hibbert, D. B.; Harper, J. B.; Zhao, C.,
Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for
“Membrane-less” and “Spill-less” Gas Sensors. ACS Applied Materials & Interfaces
2016, 8 (45), 31368-31374.
2. Khang, D.-Y.; Kang, H.; Kim, T.-I.; Lee, H. H., Low-pressure nanoimprint
lithography. Nano Letters 2004, 4 (4), 633-637.
3. Image from Tech-FAQ. http://www.tech-faq.com/photolithography.html.
4. Colson, P.; Henrist, C.; Cloots, R., Nanosphere lithography: a powerful method for the
controlled manufacturing of nanomaterials. Journal of Nanomaterials 2013, 2013, 21.
5. Image from ResearchGate_Nanopatterned Surfaces for Biomedical Applications.
https://www.researchgate.net/publication/221909895.
6. Image from The University of Sheffield. https://www.sheffield.ac.uk/ebl/patterning.
7. Reyntjens, S.; Puers, R., A review of focused ion beam applications in microsystem
technology. Journal of Micromechanics and Microengineering 2001, 11 (4), 287.
8. Image from Fibics Incorporated.
http://www.fibics.com/fib/application/nanofabrication-and-microfabrication/34/.
9. Nuzzo, R. G.; Allara, D. L., Adsorption of bifunctional organic disulfides on gold
surfaces. Journal of the American Chemical Society 1983, 105 (13), 4481-4483.
10. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of
oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical
Society 1980, 102 (1), 92-98.
11. Li, J.-R.; Garno, J. C., Elucidating the role of surface hydrolysis in preparing
organosilane nanostructures via particle lithography. Nano Letters 2008, 8 (7),
1916-1922.
12. Finklea, H.; Robinson, L.; Blackburn, A.; Richter, B.; Allara, D.; Bright, T.,
Formation of an organized monolayer by solution adsorption of
octadecyltrichlorosilane on gold: electrochemical properties and structural
characterization. Langmuir 1986, 2 (2), 239-244.
13. Stevens, M. J., Thoughts on the structure of alkylsilane monolayers. Langmuir 1999,
15 (8), 2773-2778.
14. Maoz, R.; Sagiv, J., On the formation and structure of self-assembling monolayers. I.
A comparative atr-wettability study of Langmuir—Blodgett and adsorbed films on flat
substrates and glass microbeads. Journal of Colloid and Interface Science 1984, 100
(2), 465-496.
15. Cohen, S. R.; Naaman, R.; Sagiv, J., Thermally induced disorder in organized organicmonolayers on solid substrates. The Journal of Physical Chemistry 1986, 90 (14),
3054-3056.
16. Tripp, C.; Hair, M., An infrared study of the reaction of octadecyltrichlorosilane with
silica. Langmuir 1992, 8 (4), 1120-1126.
17. Image from WIKIMEDIA COMMONS.
https://commons.wikimedia.org/wiki/File:AFM_schematic_(EN).svg.
18. Image from Bone Biology and Mechanics Lab.
http://www.iupui.edu/~bbml/afmintro.shtml.
19. Image from BWTEK. http://bwtek.com/raman-theory-of-raman-scattering.
20. Image from BIG Physics for small Science ─ FromTheLabBench.
http://www.scilogs.com/from_the_lab_bench/big-physics-for-small-science/.
21. Brownfield, A. L.; Causey, C. P.; Mullen, T. J., Influence of solvent on
octadecyltrichlorosilane nanostructures fabricated using particle lithography. The
Journal of Physical Chemistry C 2015, 119 (22), 12455-12463.
22. Smith, M. B.; Efimenko, K.; Fischer, D. A.; Lappi, S. E.; Kilpatrick, P. K.; Genzer, J.,
Study of the packing density and molecular orientation of bimolecular self-assembled
monolayers of aromatic and aliphatic organosilanes on silica. Langmuir 2007, 23 (2),
673-683.
23. Cazes, J., Encyclopedia of Chromatography 2004 Update Supplement. CRC press:
2004.
24. Zhu, M.; Lerum, M. Z.; Chen, W., How to prepare reproducible, homogeneous, and
hydrolytically stable aminosilane-derived layers on silica. Langmuir 2011, 28 (1),
416-423.
25. Jones, R. L.; Pearsall, N. C.; Batteas, J. D., Disorder in alkylsilane monolayers
assembled on surfaces with nanoscopic curvature. The Journal of Physical Chemistry
C 2009, 113 (11), 4507-4514.
26. Sambasivan, S.; Hsieh, S.; Fischer, D. A.; Hsu, S. M., Effect of self-assembled
monolayer film order on nanofriction. Journal of Vacuum Science & Technology A:
Vacuum, Surfaces, and Films 2006, 24 (4), 1484-1488.
27. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy
and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
28. Alvarez-Puebla, R.; Cui, B.; Bravo-Vasquez, J.-P.; Veres, T.; Fenniri, H.,
Nanoimprinted SERS-active substrates with tunable surface plasmon resonances. The
Journal of Physical Chemistry C 2007, 111 (18), 6720-6723.
29. Wang, P.; Xia, M.; Liang, O.; Sun, K.; Cipriano, A. F.; Schroeder, T.; Liu, H.; Xie,
Y.-H., Label-free SERS selective detection of dopamine and serotonin using
graphene-Au nanopyramid heterostructure. Analytical Chemistry 2015, 87 (20),10255-10261.
30. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J., Preparation and
characterization of Au colloid monolayers. Analytical Chemistry 1995, 67 (4),
735-743.
31. Wu, H.-L.; Kuo, C.-H.; Huang, M. H., Seed-Mediated Synthesis of Gold Nanocrystals
with Systematic Shape Evolution from Cubic to Trisoctahedral and Rhombic
Dodecahedral Structures. Langmuir 2010, 26 (14), 12307-12313.
32. Chandra, K.; Culver, K. S.; Werner, S. E.; Lee, R. C.; Odom, T. W., Manipulating the
anisotropic structure of gold nanostars using good’s buffers. Chemistry of Materials
2016, 28 (18), 6763-6769.
33. Yu, C.; Varghese, L.; Irudayaraj, J., Surface modification of cetyltrimethylammonium
bromide-capped gold nanorods to make molecular probes. Langmuir 2007, 23 (17),
9114-9119.
34. Lee, D.; Yoon, S., Gold nanocube–nanosphere dimers: Preparation, plasmon coupling,
and surface-enhanced Raman scattering. The Journal of Physical Chemistry C 2015,
119 (14), 7873-7882.
35. Nikoobakht, B.; El-Sayed, M. A., Evidence for bilayer assembly of cationic
surfactants on the surface of gold nanorods. Langmuir 2001, 17 (20), 6368-6374.
36. Sau, T. K.; Murphy, C. J., Self-assembly patterns formed upon solvent evaporation of
aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various
shapes. Langmuir 2005, 21 (7), 2923-2929.
37. Murphy, C. J.; Thompson, L. B.; Alkilany, A. M.; Sisco, P. N.; Boulos, S. P.;
Sivapalan, S. T.; Yang, J. A.; Chernak, D. J.; Huang, J., The many faces of gold
nanorods. The Journal of Physical Chemistry Letters 2010, 1 (19), 2867-2875.
38. Liu, H.; Xu, Y.; Qin, Y.; Sanderson, W.; Crowley, D.; Turner, C. H.; Bao, Y.,
Ligand-directed formation of gold tetrapod nanostructures. The Journal of Physical
Chemistry C 2013, 117 (33), 17143-17150.
39. Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic
understanding of surface plasmon assisted catalysis on a single particle: cyclic redox
of 4-aminothiophenol. Scientific Reports 2013, 3, 2997.
40. Martín, A.; Pescaglini, A.; Schopf, C.; Scardaci, V.; Coull, R.; Byrne, L.; Iacopino, D.,
Surface-enhanced Raman scattering of 4-aminobenzenethiol on Au nanorod ordered
arrays. The Journal of Physical Chemistry C 2014, 118 (24), 13260-13267.
41. Kanipe, K. N.; Chidester, P. P.; Stucky, G. D.; Moskovits, M., Large format
surface-enhanced Raman spectroscopy substrate optimized for enhancement and
uniformity. ACS Nano 2016, 10 (8), 7566-7571.
42. Ye, M.; Wei, Z.; Hu, F.; Wang, J.; Ge, G.; Hu, Z.; Shao, M.; Lee, S.-T.; Liu, J., Fastassembling microarrays of superparamagnetic Fe 3 O 4@ Au nanoparticle clusters as
reproducible substrates for surface-enhanced Raman scattering. Nanoscale 2015, 7
(32), 13427-13437.
43. Pasquale, A. J.; Reinhard, B. r. M.; Dal Negro, L., Engineering photonic–plasmonic
coupling in metal nanoparticle necklaces. ACS Nano 2011, 5 (8), 6578-6585.
44. Yap, F. L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S., Nanoparticle cluster arrays
for high-performance SERS through directed self-assembly on flat substrates and on
optical fibers. ACS Nano 2012, 6 (3), 2056-2070.