簡易檢索 / 詳目顯示

研究生: 蔡弼丞
Tsai, Pi-Cheng
論文名稱: 結構體阻尼比之頻譜分析
Spectrum analysis for estimating structural damping
指導教授: 賴啟銘
Lai, Chi-Ming
共同指導教授: 張惠雲
Chang, Heui-Yung
蘇聖中
Su, Sheng-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 121
中文關鍵詞: 阻尼比有限元素分析Etabs半功率法希爾伯特-黃轉換時頻域放大函數結構損害分析
外文關鍵詞: damping ratio, HHT, Half power bandwidth method
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 結構物的阻尼比為評估其耐震性能與能量耗散能力之重要參數,能夠反映結構在地震或外力作用下的衰減能力與損傷程度。傳統常見的估算方法如對數衰減法與半功率法雖具理論基礎,並廣泛應用於線性動力系統中,惟其推導多基於理想假設條件,包含系統為單自由度(SDOF)、行為為線性彈性,且外力為穩定的單頻正弦波等,致使在實務應用上,特別是面對非線性與非穩態特性明顯的地震紀錄時,其適用性與準確性不足,導致無法有效反映結構實際之動態反應。
    為解決上述限制,本研究提出結合有限元素分析與希爾伯特-黃轉換之阻尼比估算方法。將實際建物加速度資料經過HHT轉換後繪製邊際譜,再以 ETABS 建立不同預設阻尼比之多個單自由度模型,以相同基底加速度作用後將得到資料同樣進行HHT並繪製邊際譜,再配合半功率法推估阻尼比,最後比對實際資料與模型響應結果並進行內插,推估出結構真實阻尼比之可能範圍。
    研究分為兩階段,第一階段採用中央氣象局之同一測站的不同地震資料,觀察其在不同地震作用下所得結果是否具有一致性與穩定性,作為方法可行性的初步驗證依據。若三筆地震資料阻尼比推估值差異甚小,則認為此估算方式可行。第二階段則以具實際損壞案例之建築物—台東縣消防局作為分析對象,分別選取損害前、造成損害之地震,以及損害後所遭遇之地震資料,進行同樣分析流程,探討此方法對於建物在不同健康狀態下之阻尼比評估能力,進一步驗證其對震後結構診斷與健康監測之應用可行性。

    Traditional methods for estimating structural damping ratios, such as the logarithmic decrement and half-power bandwidth methods, are based on simplified assumptions: linear behavior, single-degree-of-freedom systems, and steady sinusoidal excitation. These conditions limit their accuracy when applied to real seismic records, which are typically nonlinear and non-stationary.
    To address these limitations, this study employs the Hilbert-Huang Transform (HHT) in combination with ETABS finite element models to simulate the marginal spectrum response under different damping ratios. The goal is to estimate the damping ratio of actual structures based on the observed HHT spectral features.
    The study is conducted in two phases. In the first phase, earthquake records from the same station but different events are analyzed to assess the consistency and reliability of the proposed method. In the second phase, a damaged reinforced concrete building is analyzed to evaluate damping ratio variations before, during, and after damage.
    Results from the first phase show that the estimated damping ratios are consistent with code-recommended values and are similar across different seismic events, supporting the method’s feasibility. In the second phase, the estimated damping ratio increases significantly after structural damage. While the estimated values do not fully reach the code-recommended values, they still provide valuable insight for structural assessment and post-earthquake evaluation.

    摘要i Extended Abstract ii 致謝viii 目錄ix 表目錄x 圖目錄xii 第一章 緒論1 1.1 研究背景與動機1 1.2 論文架構1 第二章 文獻回顧3 2.1 前言3 2.2 半功率法3 2.3 希爾伯特-黃轉換6 2.4 HHT時頻放大函數10 第三章 有限元素模型分析15 3.1 前言15 3.2 半功率法模型驗證15 3.3 地震加速度頻譜18 3.4 HHT配合半功率法19 第四章 實際案例分析71 4.1 前言71 4.2 分析案例介紹71 4.3 受震分析71 第五章 結論與建議98 5.1 研究結論98 5.2 研究建議99 參考文獻100

    [1]蘇聖中,「結構物強震觀測資料之希爾伯特-黃結構物健康診斷方法」,國立中央大學土木工程研究所,博士論文,2015
    [2]Wang, FengJin, Zhang (2012). Estimation error of the half-power bandwidth method in identifying damping for multi-DOF systems. Soil Dynamics and Earthquake Engineering.39(2012) . 138–142
    [3]Clough, R. W., & Penzien, J. (2003). Dynamics Of Structures (3rd ed.). Berkeley, CA: Computers & Structures, Inc.
    [4]CristianCruz,Eduaro Miranda(2019). Reliability of damping ratios inferred from the seismic response of buildings. Engineering Structural.184(2019)355-368
    [5]Wu,Z., and N. E Huang(2009).Ensemble Mode Decomposition:A Noise-Assisted Data Analysis Method.Vol.1 No.1,World Scientific.
    [6]Huang,N. E.,M. T. Lo,Z. H.Wu,and X. Y. Chen(2006).Method for Quantifying and Modeling Degree of Nonlinearity,Combined Nonlinearity and Nonstationarity.United State Patent Application.
    [7]Chopra, A. K. (2007). Dynamics of structures. Pearson Education India.
    [8]Yu, Q., Xu, D., Zhu, Y., & Guan, G. (2020). An efficient method for estimating the damping ratio of a vibration isolation system. Mechanics & Industry, 21(1), 103.
    [9]Milad Jahangiri,Mohammad Ali Hadianfard,Shahrolh Shojaei(2024).Evaluation of the frequency, damping, and vulnerability variations of masonry structures during the construction process using seismic response acquisition. Measurement 115201.
    [10]Cohen,L.,Time-frequency Analysis,Pretice-Hall,New York,USA,1994
    [11]Huang,N. E.,C. C. Chern,K. Huang,L. W. Salvino,S. R.Long,andK. L. Fan,”A New Spectral Reoresentation of Earthquake Data:Hiblert Spectral Analysis of Station TCU129,Chi-Chi,Taiwan,21 September 1999”,Bull. Seism. Soc. Am, Vol. 91 issue 5,pp.1310-1388,Seismological Society of America,Octorber 2001.
    [12]Cruz, C., & Miranda, E. (2021). Damping ratios of the first mode for the seismic analysis of buildings. Journal of Structural Engineering, 147(1), 04020300.
    [13]Chen, G., Yang, J., Liu, Y., Kitahara, T., & Beer, M. (2023). An energy‐frequency parameter for earthquake ground motion intensity measure. Earthquake Engineering & Structural Dynamics, 52(2), 271-284.
    [14]Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... & Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
    [15]Boore, D. M., Watson-Lamprey, J., & Abrahamson, N. A. (2006). Orientation-independent measures of ground motion. Bulletin of the seismological Society of America, 96(4A), 1502-1511.
    [16]Kohrangi, M., Vamvatsikos, D., & Bazzurro, P. (2019). Pulse‐like versus non‐pulse‐like ground motion records: spectral shape comparisons and record selection strategies. Earthquake Engineering & Structural Dynamics, 48(1), 46-64.
    [17]Pioldi, F., & Rizzi, E. (2018). Earthquake‐induced structural response output‐only identification by two different Operational Modal Analysis techniques. Earthquake Engineering & Structural Dynamics, 47(1), 257-264.
    [18]Cruz, C., & Miranda, E. (2019). Reliability of damping ratios inferred from the seismic response of buildings. Engineering Structures, 184, 355-368.
    [19]中央氣象局,災害地震資料
    [20]國家地震研究中心,第五十八期專題報導,2006
    [21]郭芸彤,「HHT頻譜分析法於結構阻尼評估應用之初探」,國立成功大學土木工程研究所,碩士論文,2024
    [22]游勝凱,「應用HHT時頻譜於鋼結構受震瞬時模態能量之分析」,國立中興大學土木工程研究所,碩士論文,2024
    [23]羅偉宸,「希爾伯特-黃(HHT)結構健康監測方法於多樓層結構材料參數改變之應用」,國立中央大學土木工程研究所,碩士論文,2021
    [24]謝均岳,「應用希爾伯特-黃轉換以非線性度分析於結構健康診斷」,國立中央大學土木工程研究所,碩士論文,2017
    [25]劉承揚,「小波理論應用於結構自然頻率與阻尼比分析之研究」,國立成功大學造船暨船舶機械工程研究所,碩士論文,2001
    [26]李至旻,「梁結構健康診斷之自然頻率與模態辨識」,國立中央大學土木工程研究所,碩士論文,2023
    [27]張皓瑋,「改變地震大小於 HHT 結構健康監測方法之應用」,國立中央大學土木工程研究所,碩士論文,2020
    [28]林奕男,「懸臂梁結構尺寸與自然頻率及阻尼比關係之研究」 ,國立中興大學機械工程研究所,碩士論文,2004
    [29]邱群翔,「有限元素模型於希爾伯特-黃結構健康監測方法之應用 -以不同阻尼為例」,國立中央大學土木工程研究所,碩士論文,2019
    [30]周偉庭,「應用希爾伯特-黃轉換之受震結構安全性實驗研究 」 ,國立中央大學土木工程研究所,碩士論文,2016
    [31]李信宏,「應用不同地震於 HHT 結構健康監測方法」,國立中央大學土木工程研究所,碩士論文,2019

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE