簡易檢索 / 詳目顯示

研究生: 莫艾迪
Mohamed, Mohamed Abdi
論文名稱: 聚合物改質瀝青老化對石膠泥瀝青混凝土性能的影響
Effect of Polymer-Modified Asphalt Aging on The Performance of Stone Mastic Asphalt
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 122
中文關鍵詞: 石膠泥瀝青(SMA)短期老化長期老化漢堡車轍試驗(HWTT)IDEAL-CT試驗多重應力潛變回復(MSCR)線性震幅掃描(LAS)凝膠滲透層析(GPC)傅立葉紅外光譜(FTIR)
外文關鍵詞: Stone Mastic Asphalt (SMA), Short-term Aging, Long-term Aging, Hamburg Wheel Tracking Test (HWTT), IDEAL CT Test, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Sweep (LAS), Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR)
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 瀝青是構建和維護路面基礎設施的核心組成部分,為道路、公路及各類交通網絡提供耐用且具成本效益的表面。通過改質以提升瀝青的耐久性及力學性能是一項持續的工作,然而,目前尚無針對瀝青膠泥的標準化改質程序。本研究探討了高分子改質瀝青(PMB)的改質過程如何影響其短期及長期的成效特性。本研究分為兩個階段。在第一階段中,採用了石膠泥瀝青(SMA)混合料設計對粒料級配進行優化,並基於成效評估了兩個試驗級配。研究的第二階段則涉及實驗室老化模擬,以預測兩種黏度相同但成效等級不同的高分子改質膠泥的短期及長期成效。本研究依據AASHTO R30標準進行短期老化模擬,對鬆散瀝青混合料進行老化處理。此外,研究採用了NCHRP 09-54項目開發的先進老化模擬程序進行長期老化,該方法包含氣候老化指數(CAI),以更真實地模擬實際氣候條件。在短期及長期老化模擬後,進行了兩項成效測試(漢堡車轍試驗和IDEAL-CT試驗)。為了進一步分析差異,從混合料中提取了老化後的膠泥,並進行了流變學和化學測試,包括多重應力潛變回復(MSCR)、線性震幅掃描(LAS)、凝膠滲透層析(GPC)及傅立葉紅外光譜(FTIR)等測試。根據成效測試結果,PMA-I的成效優於PMA-II,這與基於膠泥成效等級系統的預期相反。化學和流變學測試結果進一步支持了混合料成效結果,證明了PMA-I的優越性。PMA-II的低劣成效可能歸因於其高分子改質過程中出現了過早老化。

    Asphalt is a fundamental component in constructing and maintaining pavement infrastructure, providing a durable and cost-effective surface for roads, highways, and various transportation networks. Enhancing the durability and mechanical performance of asphalt through modifications is a continuous endeavor, yet there is no standardized procedure for modifying the asphalt binder. This study investigates how the modification process of Polymer-Modified Bitumen (PMB) affects its short-term and long-term performance characteristics. The study is divided into two phases. In the first phase, the gradation was optimized using the Stone Mastic Asphalt (SMA) mix design. Two trial gradations were evaluated based on their performance. The study's second phase involves laboratory aging simulations to predict both short-term and long-term performances of two polymer-modified binders with the same viscosity but different performance grades. The AASHTO R30 standard was used for short-term aging simulation, subjecting loose asphalt mixtures to aging. Additionally, an advanced aging simulation procedure developed under the NCHRP 09-54 project was employed for long-term aging. This approach includes the Climatic Aging Index (CAI) to mimic real-world climatic conditions closely. Two performance tests (Hamburg wheel tracking test and Ideal-CT) were conducted after the short-term and long-term aging simulations. To further analyze the differences, the aged binder in the mixtures was extracted and subjected to rheological and chemical tests, including Multiple Stress Creep Recovery (MSCR), Linear Amplitude Sweep (LAS), Gel Permeation Chromatography (GPC), and Fourier Transform Infrared Spectroscopy (FTIR). Based on the performance test results, PMA-I outperformed PMA-II, contrary to expectations based on the binder performance grading system. The results of the chemical and rheological tests shown to support the mixture performance results demonstrating the superiority of PMA-I. The poor performance of this PMA-II can be attributed to its polymer modification process, which might have experienced premature aging during the modification process.

    摘要 i ABSTRACT ii DEDICATION iv ACKNOWLEDGEMENTS v TABLE OF CONTENTS vi LIST OF TABLES viii LIST OF FIGURES ix 1.INTRODUCTION 1 1.1. Background 1 1.2. Research Objectives 3 1.3. Thesis Scope and Limitations 3 1.4. Thesis Organization 4 2.LITERATURE REVIEW 6 2.1. Stone Mastic Asphalt 6 2.1.1. SMA Mix Design Considerations 9 2.1.2. Performance differences between fine and coarse-graded mixtures 14 2.2. Polymer-modified asphalt binder preparations 18 2.2.1. Modification Process 18 2.2.2. Factors Affecting Optimal Mixing of Polymer Asphalt Blend 21 2.2.3. Tests for Assessing the Quality of Polymer-Asphalt Blends 25 2.3. Laboratory aging simulations of asphalt mixtures 26 2.3.1. Short-term mixture aging simulations 27 2.3.2. Long-term mixture aging simulations 29 3.RESEARCH METHODOLOGY 34 3.1. Material Selection 35 3.1.1. SMA Aggregate Gradation 35 3.1.2. Binder 38 3.1.3. Mix Desing 39 3.2. Methods 45 3.2.1. Short-term laboratory mixture aging simulations 45 3.2.2. Long-term laboratory mixture aging simulations 46 3.2.3. Performance Test 50 4.RESULT AND DISCUSSION 61 4.1. Mixture Characteristics 61 4.1.1. SMA Mix Design Results 61 4.1.2. Performance of Coarse and Fine Gradations 62 4.2. Accelerated Aging Procedures 67 4.2.1. Performance of Short-term Aging 67 4.2.2. Performance of long-term aging 72 4.2.3. Overall Mixture Performance 79 4.3. Extracted Binder Results and their correlation to Mixture results 82 4.3.1. Extracted Binder Rheological Results 82 4.3.2. Extracted Binder Chemical Results 86 4.3.3. Correlation of Mixture performance to Binder parameters 90 5.CONCLUSION AND SUGGESTION 94 5.1. Conclusion 94 5.2. Recommendation 95 REFERENCES 96 Appendix A 107

    AAPA. (2000). Stone Mastic Asphalt Design & Application Guide. Australian Asphalt Pavement Association 2OOO.
    AASHTO R30. (2010). Standard Practice for Mixture Conditioning of Hot Mix Asphalt (HMA).
    AASHTO T19. (2015). Standard Method of Test for Bulk Density (“Unit Weight”) and Voids in Aggregate.
    AASHTO T324-17. (n.d.). Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures.
    Airey, G. (2003). Rheological properties of styrene butadiene styrene polymer modified road bitumens⋆. Fuel, 82(14), 1709–1719. https://doi.org/10.1016/S0016-2361(03)00146-7
    Al-Fayyadh, Z. T., & Al-Mosawe, H. (2022). The Effect of Short-Term Aging on Warm Mix Asphalt Moisture Performance. Civil Engineering Journal, 8(12), 2789–2802. https://doi.org/10.28991/CEJ-2022-08-12-09
    Ali, Zahran, Trogdon, & Bergan, A. (1994). A mechanistic evaluation of modified asphalt paving mixtures.
    Aljubory, A., Teama, Z. T., Salman, H. T., & Abd Alkareem, H. M. (2021). Effects of cellulose fibers on the properties of asphalt mixtures. Materials Today: Proceedings, 42, 2941–2947. https://doi.org/10.1016/j.matpr.2020.12.772
    Ameri, M., Mansourian, A., & Sheikhmotevali, A. H. (2013). Laboratory evaluation of ethylene vinyl acetate modified bitumens and mixtures based upon performance related parameters. Construction and Building Materials, 40, 438–447. https://doi.org/10.1016/j.conbuildmat.2012.09.109
    Arega, Z. A., Bhasin, A., & Kesel, T. D. (2013). Influence of extended aging on the properties of asphalt composites produced using hot and warm mix methods. Construction and Building Materials, 44, 168–174. https://doi.org/10.1016/j.conbuildmat.2013.02.081
    Arslan, D., Gürü, M., & Kürşat Çubuk, M. (2014). Preventing of rutting and crackings in the bituminous mixtures by monoethylene and diethylene glycol based synthetic polyboron compounds. Construction and Building Materials, 50, 102–107. https://doi.org/10.1016/j.conbuildmat.2013.09.039
    Asphalt Institute. (2014). Ms-2 asphalt mix design methods (7th edition). Asphalt Institute.
    ASTM D6390−23. (n.d.). Test Method for Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures. ASTM International. https://doi.org/10.1520/D6390-23
    Baek, C., Underwood, B. S., & Kim, Y. R. (2012). Effects of Oxidative Aging on Asphalt Mixture Properties. Transportation Research Record: Journal of the Transportation Research Board, 2296(1), 77–85. https://doi.org/10.3141/2296-08
    Bahia, & Davies. (1994). Effect of Crumb Rubber Modifiers (CRM) on Performance-Related. Asphalt Paving Technology.
    Bahia, H. U., & Zhai, H. (2000). Storage stability of modified binders using the newly developed LAST procedure. Road Materials and Pavement Design, 1(1–2), 53–73. https://doi.org/10.1080/14680629.2000.9689884
    Baldino, N., Gabriele, D., Lupi, F. R., Oliviero Rossi, C., Caputo, P., & Falvo, T. (2013). Rheological effects on bitumen of polyphosphoric acid (PPA) addition. Construction and Building Materials, 40, 397–404. https://doi.org/10.1016/j.conbuildmat.2012.11.001
    Blazejowski. (2016). Stone Matrix Asphalt: Theory and Practice (0 ed.). CRC Press. https://doi.org/10.1201/b10285
    Bocci, E., & Prosperi, E. (2020). Recycling of reclaimed fibers from end-of-life tires in hot mix asphalt. Journal of Traffic and Transportation Engineering (English Edition), 7(5), 678–687. https://doi.org/10.1016/j.jtte.2019.09.006
    Braswell, E., Saleh, N. F., Elwardany, M., Yousefi Rad, F., Castorena, C., Underwood, B. S., & Kim, Y. R. (2021). Refinement of Climate-, Depth-, and Time-Based Laboratory Aging Procedure for Asphalt Mixtures. Transportation Research Record: Journal of the Transportation Research Board, 2675(2), 207–218. https://doi.org/10.1177/0361198120957316
    Brown. (1993). EXPERIENCE WITH STONE MATRIX ASPHALT IN THE UNITED STATES.
    Brown, E. R., & Cooley, L. A. (1999). Designing stone matrix asphalt mixtures for rut-resistant pavements. National Academy Press.
    Brown, H., & Haddock, J. E. (1997). Method To Ensure Stone-on-Stone Contact in Stone Matrix Asphalt Paving Mixtures. Transportation Research Record: Journal of the Transportation Research Board, 1583(1), 11–18. https://doi.org/10.3141/1583-02
    Brown, Haddock, Mallick, & Lynn. (1997). DEVELOPMENT OF A MIXTURE DESIGN PROCEDURE FOR STONE MATRIX ASPHALT (SMA).
    Brown, & Mallick. (1994). STONE MATRIX ASPHALT- PROPERTIES RELATED TO MIXTURE DESIGN. NCAT Report.
    Brown, Mallick, Haddock, & Bukowski. (1997). PERFORMANCE OF STONE MATRIX ASPHALT (SMA) MIXTURES IN THE UNITED STATES. NCAT Report.
    Cooley, & Hurley. (2004). POTENTIAL OF USING STONE MATRIX ASPHALT (SMA) IN MISSISSIPPI.
    Dalhat, M. A., & Al-Abdul Wahhab, H. I. (2017). Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering, 18(4), 349–357. https://doi.org/10.1080/10298436.2015.1088150
    Dalhat, M. A., & Al-Adham, K. (2023). Review on laboratory preparation processes of polymer modified asphalt binder. Journal of Traffic and Transportation Engineering (English Edition), 10(2), 159–184. https://doi.org/10.1016/j.jtte.2023.01.002
    Devulapalli, L., Sarang, G., & Kothandaraman, S. (2022). Characteristics of aggregate gradation, drain down and stabilizing agents in stone matrix asphalt mixtures: A state of art review. Journal of Traffic and Transportation Engineering (English Edition), 9(2), 167–179. https://doi.org/10.1016/j.jtte.2021.10.007
    Divya, P. S., Gideon, C. S., & Murali Krishnan, J. (2013). Influence of the Type of Binder and Crumb Rubber on the Creep and Recovery of Crumb Rubber Modified Bitumen. Journal of Materials in Civil Engineering, 25(4), 438–449. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000608
    Dong, F., Yu, X., Liu, S., & Wei, J. (2016). Rheological behaviors and microstructure of SBS/CR composite modified hard asphalt. Construction and Building Materials, 115, 285–293. https://doi.org/10.1016/j.conbuildmat.2016.04.057
    Dong, F., Zhao, W., Zhang, Y., Wei, J., Fan, W., Yu, Y., & Wang, Z. (2014). Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Construction and Building Materials, 62, 1–7. https://doi.org/10.1016/j.conbuildmat.2014.03.018
    Dong, Y., & Tan, Y. (2011). Mix Design and Performance of Crumb Rubber Modified Asphalt SMA. Pavements and Materials, 78–86. https://doi.org/10.1061/47623(402)10
    Du, S. W., & Li, S. S. (2011). Laboratory Evaluation of Warm Stone Matrix Asphalt Mixture. Advanced Materials Research, 243–249, 4178–4181. https://doi.org/10.4028/www.scientific.net/AMR.243-249.4178
    EAPA. (2018). Heavy Duty Surfaces The Arguments for SMA.
    Elwardany, M. D., Rad, F. Y., Castorena, C., & Kim, Y. R. (2020). Climate-, Depth-, and Time-Based Laboratory Aging Procedure for Asphalt Mixtures. Asphalt Paving Technology, aapt. https://doi.org/10.12783/aapt2018/33815
    Elwardany, M. D., Yousefi Rad, F., Castorena, C., & Kim, Y. R. (2017). Evaluation of asphalt mixture laboratory long-term ageing methods for performance testing and prediction. Road Materials and Pavement Design, 18(sup1), 28–61. https://doi.org/10.1080/14680629.2016.1266740
    Emtiaz, M., Imtiyaz, M. N., Majumder, M., Idris, I. I., Mazumder, R., & Rahaman, M. M. (2023). A Comprehensive Literature Review on Polymer-Modified Asphalt Binder. CivilEng, 4(3), 901–933. https://doi.org/10.3390/civileng4030049
    Erkuş, Y., Kök, B. V., & Yilmaz, M. (2020). Evaluation of performance and productivity of bitumen modified by three different additives. Construction and Building Materials, 261, 120553. https://doi.org/10.1016/j.conbuildmat.2020.120553
    Guo, L., Xu, W., Zhang, Y., Ji, W., & Wu, S. (2022). Selecting the Best Performing Modified Asphalt Based on Rheological Properties and Microscopic Analysis of RPP/SBS Modified Asphalt. Materials, 15(23), 8616. https://doi.org/10.3390/ma15238616
    Li, M., Liu, L., Meng, Y., & Wang, W. (2023). A novel gel permeation chromatography-based assessment methodology for aging condition of SBS modified asphalt in recycled asphalt pavement. Construction and Building Materials, 395, 132337. https://doi.org/10.1016/j.conbuildmat.2023.132337
    Ma, J., Sun, G., Sun, D., Yu, F., Hu, M., & Lu, T. (2021). Application of gel permeation chromatography technology in asphalt materials: A review. Construction and Building Materials, 278, 122386. https://doi.org/10.1016/j.conbuildmat.2021.122386
    Negulescu, & Sreelatha. (2012). Implementation of GPC Characterization of Asphalt Binders at Louisiana Materials Laboratory.
    Polacco, G., Filippi, S., Merusi, F., & Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72–112. https://doi.org/10.1016/j.cis.2015.07.010
    Rodrigues, A. L., Falcão, C., & Williams, R. C. (2023). Rheological and Aging Characteristics of Polymer-Modified Asphalt with the Addition of Sulfur. Infrastructures, 8(11), 160. https://doi.org/10.3390/infrastructures8110160
    Wang, Y., Yi, H., Liang, P., Chai, C., Yan, C., & Zhou, S. (2022). Investigation on Preparation Method of SBS-Modified Asphalt Based on MSCR, LAS, and Fluorescence Microscopy. Applied Sciences, 12(14), 7304. https://doi.org/10.3390/app12147304
    Fakhri, M., & Shahryari, E. (2021). The effects of nano zinc oxide (ZnO) and nano reduced graphene oxide (RGO) on moisture susceptibility property of stone mastic asphalt (SMA). Case Studies in Construction Materials, 15, e00655. https://doi.org/10.1016/j.cscm.2021.e00655

    Fakhri, M., Shahryari, E., & Ahmadi, T. (2022). Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA). Construction and Building Materials, 326, 126780. https://doi.org/10.1016/j.conbuildmat.2022.126780
    Fang, C., Liu, P., Yu, R., & Liu, X. (2014). Preparation process to affect stability in waste polyethylene-modified bitumen. Construction and Building Materials, 54, 320–325. https://doi.org/10.1016/j.conbuildmat.2013.12.071
    Fang, C., Wu, C., Yu, R., Zhang, Z., Zhang, M., & Zhou, S. (2013). Aging properties and mechanism of the modified asphalt by packaging waste polyethylene and waste rubber powder. Polymers for Advanced Technologies, 24(1), 51–55. https://doi.org/10.1002/pat.3048
    Fujie Zhou, Walaa S. Mogawer, Michael D. Elwardany, David J. Mensching, & Enad Muhib Ahmad Mahmoud. (2022). Development of a Laboratory Operations-Friendly Long-Term Loose Mix Aging Protocol for New Asphalt Pavements. Transportation Research Record, 036119812211375–036119812211375.
    González, V., Martínez-Boza, F. J., Gallegos, C., Pérez-Lepe, A., & Páez, A. (2012). A study into the processing of bitumen modified with tire crumb rubber and polymeric additives. Fuel Processing Technology, 95, 137–143. https://doi.org/10.1016/j.fuproc.2011.11.018
    Guo, L., Xu, W., Zhang, Y., Ji, W., & Wu, S. (2022). Selecting the Best Performing Modified Asphalt Based on Rheological Properties and Microscopic Analysis of RPP/SBS Modified Asphalt. Materials, 15(23), 8616. https://doi.org/10.3390/ma15238616
    Harrigan, Transportation Research Board, & National Academies of Sciences, Engineering, and Medicine. (2007). Simulating the Effects of Hot-Mix Asphalt Aging for Performance Testing and Pavement Structural Design (p. 23238). Transportation Research Board. https://doi.org/10.17226/23238
    Hasan, M. M., Ahmad, M., Hasan, M. A., Faisal, H. M., & Tarefder, R. A. (2019). Laboratory Performance Evaluation of Fine and Coarse-Graded Asphalt Concrete Mix. Journal of Materials in Civil Engineering, 31(11), 04019259. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002905
    Heydari, S., Hajimohammadi, A., Haji Seyed Javadi, N., Jeremy Kien Chung Ng, J., Emmanuel Kypreos, J., & Khalili, N. (2023). Modified asphalt by coffee cup Fibres: An optimum mix design using response surface method. Construction and Building Materials, 401, 133005. https://doi.org/10.1016/j.conbuildmat.2023.133005
    Hofko, B., Cannone Falchetto, A., Grenfell, J., Huber, L., Lu, X., Porot, L., Poulikakos, L. D., & You, Z. (2017). Effect of short-term ageing temperature on bitumen properties. Road Materials and Pavement Design, 18(sup2), 108–117. https://doi.org/10.1080/14680629.2017.1304268
    Houston, Mirza, & Zapata. (2006). Environmental Effects in Pavement Mix and Structural Design Systems (p. 23244). Transportation Research Board. https://doi.org/10.17226/23244
    Kim, Y. R., Castorena, C., Elwardany, M., Rad, F. Y., Underwood, S., Gundha, A., Gudipudi, P., Farrar, M. J., Glaser, R. R., National Cooperative Highway Research Program, Transportation Research Board, & National Academies of Sciences, Engineering, and Medicine. (2017). Long-Term Aging of Asphalt Mixtures for Performance Testing and Prediction (p. 24959). Transportation Research Board. https://doi.org/10.17226/24959
    Kumar, A. (2020). Characterisation of asphalt binder modified with ethylene–propylene–diene–monomer (EPDM) rubber wast. ROAD MATERIALS AND PAVEMENT DESIGN.
    Kumar, A., Choudhary, R., & Kumar, A. (2021). Characterisation of asphalt binder modified with ethylene–propylene–diene–monomer (EPDM) rubber waste from automobile industry. Road Materials and Pavement Design, 22(9), 2044–2068. https://doi.org/10.1080/14680629.2020.1740772
    Larsen, D. O., Alessandrini, J. L., Bosch, A., & Cortizo, M. S. (2009). Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Construction and Building Materials, 23(8), 2769–2774. https://doi.org/10.1016/j.conbuildmat.2009.03.008
    Laukkanen, O.-V., Soenen, H., Winter, H. H., & Seppälä, J. (2018). Low-temperature rheological and morphological characterization of SBS modified bitumen. Construction and Building Materials, 179, 348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160
    Lewandawski. (1994). Polymer modification of Paving Asphalt Binder.
    Liu, H., Hao, P., & Xu, J. (2017). Effects of Nominal Maximum Aggregate Size on the Performance of Stone Matrix Asphalt. Applied Sciences, 7(2), 126. https://doi.org/10.3390/app7020126
    Lu, X., Soenen, H., Sjövall, P., & Pipintakos, G. (2021). Analysis of asphaltenes and
    maltenes before and after long-term aging of bitumen. Fuel, 304, 121426. https://doi.org/10.1016/j.fuel.2021.121426
    M. Garcı ́a-Morales, P. P. (2007). Processing rheology & storage stability of recycled EVA/LDPE modified bitumen.
    Medina, J. G., Giancontieri, G., & Lo Presti, D. (2020). Quality control of manufacturing and hot storage of crumb rubber modified binders. Construction and Building Materials, 233, 117351. https://doi.org/10.1016/j.conbuildmat.2019.117351
    Motamedi, M., Shafabakhsh, G., & Azadi, M. (2021). Evaluation of fatigue and rutting properties of asphalt binder and mastic modified by synthesized polyurethane. Journal of Traffic and Transportation Engineering (English Edition), 8(6), 1036–1048. https://doi.org/10.1016/j.jtte.2020.05.006
    NAPA. (2002). Designing and Constructing SMA MixturesState of the Practice.
    NAPA. (2018). Advances in the Design, Production, & Construction of Stone Matrix (Mastic) Asphalt. National Asphalt Pavement Assosiation (NAPA), 1ST INTERNATIONAL CONFERENCE ON Stone Matrix Asphalt.
    Pasetto, M., & Baldo, N. (2014). Influence of the aggregate skeleton design method on the permanent deformation resistance of stone mastic asphalt. Materials Research Innovations, 18(sup3), S3-96-S3-101. https://doi.org/10.1179/1432891714Z.000000000588
    Polacco, G., Filippi, S., Merusi, F., & Stastna, G. (2015). A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility. Advances in Colloid and Interface Science, 224, 72–112. https://doi.org/10.1016/j.cis.2015.07.010
    Porto, M., Caputo, P., Loise, V., Eskandarsefat, S., Teltayev, B., & Oliviero Rossi, C. (2019). Bitumen and Bitumen Modification: A Review on Latest Advances. Applied Sciences, 9(4), 742. https://doi.org/10.3390/app9040742
    Prowell, Watson, C. Hurley, & Ray Brown. (2009). EVALUATION OF STONE MATRIX ASPHALT (SMA) FOR AIRFIELD PAVEMENTS. National Center for Asphalt Technology (NCAT), Final Report.
    Qiu, Y., & Lum, K. (2006). Design and Performance of Stone Mastic Asphalt.
    Quan Lv, L., Huang, W., Zheng, M., Sadek, H., Zhang, Y., & Yan, C. (2020). Influence of gradation on asphalt mix rutting resistance measured by Hamburg Wheel Tracking test. Construction and Building Materials, 238, 117674. https://doi.org/10.1016/j.conbuildmat.2019.117674
    Reed. (2010). Evaluation of the Effects of Aging on Asphalt Rubber Pavements.
    Rodrigues, A. L., Falcão, C., & Williams, R. C. (2023). Rheological and Aging Characteristics of Polymer-Modified Asphalt with the Addition of Sulfur. Infrastructures, 8(11), 160. https://doi.org/10.3390/infrastructures8110160
    Sangsefidi, E., Ziari, H., & Sangsefidi, M. (2016). The effect of aggregate gradation limits consideration on performance properties and mixture design parameters of hot mix asphalt. KSCE Journal of Civil Engineering, 20(1), 385–392. https://doi.org/10.1007/s12205-015-0265-8
    Sarang, G., Lekha, B. M., Geethu, J. S., & Shankar, A. U. R. (2015). Laboratory performance of stone matrix asphalt mixtures with two aggregate gradations. Journal of Modern Transportation, 23(2), 130–136. https://doi.org/10.1007/s40534-015-0071-5
    Scarpas, A., Kringos, N., Al-Qadi, I., & A., L. (Eds.). (2012). 7th RILEM International Conference on Cracking in Pavements: Mechanisms, Modeling, Testing, Detection and Prevention Case Histories (Vol. 4). Springer Netherlands. https://doi.org/10.1007/978-94-007-4566-7
    Silva Lopes, A. M. D., De Medeiros Melo Neto, O., Lopes Lucena, L. C. D. F., Nascimento, M. D. V. D., Siqueira, M. V. D., Sousa, T. M. D., & Farias Monteiro, A. F. D. (2023). Impact of aging protocols on asphalt binder behavior: A laboratory and field study. Case Studies in Construction Materials, 19, e02629. https://doi.org/10.1016/j.cscm.2023.e02629
    Sirin, O., Paul, D. K., & Kassem, E. (2018). State of the Art Study on Aging of Asphalt Mixtures and Use of Antioxidant Additives. Advances in Civil Engineering, 2018, 1–18. https://doi.org/10.1155/2018/3428961
    Sirin, O., Paul, D. K., Khan, M. S., Kassem, E., & Darabi, M. K. (2019). Effect of Aging on Viscoelastic Properties of Asphalt Mixtures. Journal of Transportation Engineering, Part B: Pavements, 145(4), 04019034. https://doi.org/10.1061/JPEODX.0000137
    Sirin, Paul, Kassem, & Ohiduzzaman. (2019). Evaluation of Short-Term Aging Protocol for Asphalt Mixtures. Applied Sciences, 9(14), 2783. https://doi.org/10.3390/app9142783
    Sreedhar, S., & Coleri, E. (2022). The effect of long-term aging on fatigue cracking resistance of asphalt mixtures. International Journal of Pavement Engineering, 23(2), 308–320. https://doi.org/10.1080/10298436.2020.1745206
    Stuart. (1992). Stone Mastic Asphalt (SMA) Mixt ure Design. Publication No . HIW A-RD - 92 - 006.
    TRB. (2002). TRANSPORTATION RESEARCH.
    Vargas, M. A., Vargas, M. A., Sánchez-Sólis, A., & Manero, O. (2013). Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Construction and Building Materials, 45, 243–250. https://doi.org/10.1016/j.conbuildmat.2013.03.064
    Vavrik, W. R., Pine, W. J., & Carpenter, S. H. (2002). Aggregate Blending for Asphalt Mix Design: Bailey Method. Transportation Research Record: Journal of the Transportation Research Board, 1789(1), 146–153. https://doi.org/10.3141/1789-16
    Wang, Y., Yi, H., Liang, P., Chai, C., Yan, C., & Zhou, S. (2022). Investigation on Preparation Method of SBS-Modified Asphalt Based on MSCR, LAS, and Fluorescence Microscopy. Applied Sciences, 12(14), 7304. https://doi.org/10.3390/app12147304
    Wu, J., Wang, Y., Liu, Q., Wang, Y., Ago, C., & Oeser, M. (2020). Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions. Construction and Building Materials, 238, 117694. https://doi.org/10.1016/j.conbuildmat.2019.117694
    Wu, S., Pang, L., Mo, L., Chen, Y., & Zhu, G. (2009). Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Construction and Building Materials, 23(2), 1005–1010. https://doi.org/10.1016/j.conbuildmat.2008.05.004
    Yadykina, V., Tobolenko, S., Trautvain, A., & Zhukova, A. (2015). The Influence of Stabilizing Additives on Physical and Mechanical Properties of Stone Mastic Asphalt Concrete. Procedia Engineering, 117, 376–381. https://doi.org/10.1016/j.proeng.2015.08.181
    Yang, Q., Lin, J., Wang, X., Wang, D., Xie, N., & Shi, X. (2024). A review of polymer-modified asphalt binder: Modification mechanisms and mechanical properties. Cleaner Materials, 12, 100255. https://doi.org/10.1016/j.clema.2024.100255
    Yanping Sheng, Haibin Li, Ping Guo, Guijuan Zhao, Huaxin Chen, & Rui Xiong. (2017). Effect of Fibers on Mixture Design of Stone Matrix Asphalt. Applied Sciences. http://dx.doi.org/10.3390/APP7030297
    Yan, C., Huang, W., Lin, P., Zhang, Y., & Lv, Q. (2019). Chemical and rheological
    evaluation of aging properties of high content SBS polymer modified asphalt. Fuel, 252, 417–426. https://doi.org/10.1016/j.fuel.2019.04.022
    Yildirim, Y. (2007). Polymer modified asphalt binders. Construction and Building Materials, 21(1), 66–72. https://doi.org/10.1016/j.conbuildmat.2005.07.007
    Yingjun Jiang, Yu Zhang, Jinshun Xue, Changqing Deng, & Tian Tian. (2020). Performance of Stone Mastic Asphalt Mixtures Fabricated by Different Compaction Methods. Applied Sciences, 10(7), 2523-.
    Yousefi, F., Elwardany, M. D., Castorena, C., & Kim, Y. R. (2017). Investigation of proper long-term laboratory aging temperature for performance testing of asphalt concrete. Construction and Building Materials, 147, 616–629. https://doi.org/10.1016/j.conbuildmat.2017.04.197
    Zani, L., Giustozzi, F., & Harvey, J. (2017). Effect of storage stability on chemical and rheological properties of polymer-modified asphalt binders for road pavement construction. Construction and Building Materials, 145, 326–335. https://doi.org/10.1016/j.conbuildmat.2017.04.014
    Zhou, F., Im, S., Sun, L., & Scullion, T. (2017). Development of an IDEAL cracking test for asphalt mix design and QC/QA. Road Materials and Pavement Design, 18(S4), 405–427. https://doi.org/10.1080/14680629.2017.1389082

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE