簡易檢索 / 詳目顯示

研究生: 葉兆欽
Yeh, Chao-Chin
論文名稱: 飽和度對粉質砂土動態特性影響之研究
The Effects of Degree of Saturation on Dynamic Properties of Silty Sand
指導教授: 倪勝火
Ni, Sheng-Huo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 186
中文關鍵詞: 粉質砂土非飽和飽和度共振柱員林砂剪力模數阻尼比
外文關鍵詞: silty sand, unsaturated, degree of saturation, resonant column test, Yuanlin sand, shear modulus, damping ratio
相關次數: 點閱:250下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內粉質砂土含有較高的細粒料含量,且具有獨特的力學性質,國內學者較少討論非飽和的狀況,故本研究的目的在研究飽和度對國內西部粉質砂土 (員林砂) 動態特性的影響。
    本研究使用Stokoe型水平扭轉共振柱儀器進行試驗,使用濕搗法製作重模試體,並改變不同細粒料含量 (FC = 15、30與50 %)、孔隙比 (e = 0.7、0.8 與1.0) 與飽和度 (Sr = 0、5、10、20、50與100 %) 在四種圍壓階段 (PC = 25、50、100與200 kPa) 下進行試驗。
    實驗結果顯示,試體孔隙比越大,最大剪力模數受飽和度的影響越小,且孔隙比會影響最佳飽和度的大小。員林砂的最佳飽和度隨不同細粒料含量、孔隙比與圍壓大小而變化,範圍約在2 ~ 10 % 之間。細粒料含量雖然對最大剪力模數有影響,但比起飽和度、孔隙比與圍壓大小來說相對較小,故使用飽和度、孔隙比與圍壓大小作為參數整理出初步的經驗公式,以利後人與現地土樣進行比較;上述各種變因對阻尼比的影響不明顯。

    They are seldom studies to discuss the dynamic properties of unsaturated silty sands with fines content in western Taiwan. The purpose of this study is to study the effects of degree of saturation on dynamic properties of silty sand in western Taiwan (Yuanlin sand).
    In this study, Stokoe-type resonant column apparatus was used to obtain the dynamic properties of reconstituted Yuanlin sand specimens which made by moist tamping method. The testing specimens with different fines content (FC = 15, 30 and 50 %), void ratio (e = 0.7, 0.8 and 1.0) and saturation (Sr = 0, 5, 10, 20, 50 and 100 %) in the different stages of confining pressure (PC = 25, 50, 100 and 200 kPa) were studied in this thesis.
    The results show that the effects of degree of saturation on maximum shear modulus is significant. The maximum shear modulus will decrease with increasing void ratio. The void ratio, fines content, and confining pressure which affect the optimum degree of saturation of Yuanlin sand specimens. The optimum degree of saturation is between 2 to 10 %. In this study, the degree of saturation, void ratio and confining pressure as variables to determine a preliminary empirical equation to predict the maximum shear modulus of Yuanlin sand, the results of the empirical equation can compared with the maximum shear modulus of non-disturbed Yuanlin sand in future studies. However, the varying of damping rato is not obvious.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2研究目的 1 1.3 研究方法 2 1.4 論文概述 2 第二章 文獻回顧 4 2.1 土壤動力性質室內試驗簡介 4 2.2 共振柱試驗的發展 6 2.3 影響剪力模數的因子 8 2.3.1 剪應變量對剪力模數的影響 11 2.3.2 細粒料含量對剪力模數的影響 14 2.3.3 孔隙比對剪力模數的影響 19 2.3.4 平均有效圍壓對剪力模數的影響 21 2.3.5 飽和度對剪力模數的影響 22 2.4 影響阻尼比的因子 32 2.4.1 剪應變量對阻尼比的影響 32 2.4.2 細粒料含量對阻尼比的影響 34 2.4.3 孔隙比對阻尼比的影響 35 2.4.4 平均有效圍壓對阻尼比的影響 35 2.4.5 飽和度對阻尼比的影響 35 第三章 共振柱試驗原理 37 3.1 前言 37 3.2 共振柱試驗基本假設 37 3.3 剪力波速與剪力模數之決定 37 3.4 阻尼比的計算 39 3.4.1 半功率頻寬法 39 3.4.2 自由振動衰減曲線 41 3.5 共振柱試驗之剪應變計算 46 3.5.1 共振柱試驗之形狀函數 46 3.5.2 共振柱儀器之剪應變量測 48 第四章 試驗土樣、試驗設備與試驗方法 51 4.1 試驗土樣介紹 51 4.2 共振柱試驗儀器設備 52 4.2.1 共振柱試驗儀本體 52 4.2.2 加壓系統 54 4.2.3 控制與資料擷取設備 55 4.3 試驗方法與流程 60 4.3.1 土樣準備 64 4.3.2 試體製作與儀器安裝 68 第五章 試驗結果與討論 71 5.1 前言 71 5.2 對剪力模數之影響 71 5.2.1 孔隙比的影響 72 5.2.2 剪應變量的影響 92 5.2.3 細粒料含量的影響 98 5.2.4 飽和度與有效圍壓的影響 110 5.2.5 員林砂土最大剪力模數推估 119 5.3 對阻尼比的影響 142 5.3.1 孔隙比的影響 142 5.3.2 剪應變量的影響 149 5.3.3 細粒料含量、有效圍壓與飽和度的影響 154 第六章 結論與建議 163 6.1 結論 163 6.2 建議 165 參考文獻 167 附錄A 共振柱波傳方程式推導 173 附錄B 試驗結果 180 自述 186

    1. Anderson, D.G., “Dynamic Modulus of Cohesives Soils,” Thesis Presented to the University of Michigan, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, 311P. (1974).
    2. Barros, J.M.C., “Factors Affecting Dynamic Properties of Soil,” Ph.D. Thesis, University of Mechigan (1994).
    3. Drenvich, V.P., and Richart, F.E., Jr., “Dynamic Prestraining of Dry Sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 96, No. SM2, pp. 453-469 (1970).
    4. Hall, J.R., Jr., and Richart, F.E., Jr., “Dissipation of Elastic Wave Energy in Granular Soils,” Journal of the Soil Mechanics and Foundations Division Proc., ASCE, Vol. 89, No. SM6, Nov., pp. 27-56 (1963).
    5. Hardcastle, J.H., Sharma, S., “Shear Modulus and Damping of Unsaturated Loess,” Geotechnical Earthquake and Soil Dynamics III, ASCE, No. 75, pp. 178-188 (1998).
    6. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, pp. 603-624 (1972a).
    7. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soils: Design Equations and Curves,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM7, July, pp. 667-692 (1972b).
    8. Hardin, B.O., and Richart, F.E., Jr., “Elastic Wave Velocity in Granular Soils,” Journal of Soil Mechanic and Foundation Engineering Division, ASCE, Vol. 89, No. SM6, pp. 27-56 (1963).
    9. Hardin, B.O., “The Nature of Damping in Sands,” Journal of the Soil Mechanics and Foundations Division, Proc., ASCE, Vol. 91, No. SM1, Jan., pp. 63-97 (1965).
    10. Hardin, B.O., and Drnevich, V.P., “Shear Modulus and Damping in Soil Measurement and Parameter Effects,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM6, June., pp. 603-624 (1972).
    11. Huang, Y.T., Huang, A.B., Kuo, Y.C., and Tsai, M.D., “A Laboratory Study on The Undrained Strength of A Silty Sand from Central Weestern Taiwan,” Soil Dynamics and Earthquake Engineering 24, pp. 733-743 (2004).
    12. Iwasaki, T., and Tatsuoka, F., “Effects of Grain Size and Grading on Dynamic Shear Moduli of Sands,” Soils and Foundations, JSSMFE, Vol. 17, No. 3, pp. 19-35 (1977).
    13. Iwasaki, T., Tasuoka, F. and Takagi, Y., “Shear Modulus of Sands under Cyclic Torsional Shear Loading,” Soil and Foundations, JSSMFE, Vol. 18, No. 1, pp. 39-56 (1978).
    14. Lu, N., Likos, W. J., “Suction Stress Characteristic Curve for Unsaturated Soil,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, pp. 131-142, February (2006).
    15. Miller, C.J., Yesiller, N., Yaldo, K., and Merayyan, S., “ Impact of Soil Type and Compaction Conditions on Soil Water Characteristic,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 9, pp. 733-742 (2002).
    16. Qian, X., Gray, D.H., and Woods, R.D., “Resonant Column Tests on Partially Saturated Sands,” Geotechnical Testing Journal, GTJODJ, Vol. 14, No. 3, pp. 266-275, September (1991).
    17. Seed, H.B., and Idriss, I.M., “Soil Moduli and damping factors for Dynamic response analyses,” Report No. EERC 70-10, Earthquake Engineering Research Center, University of California, (1970).
    18. Seed, H.B., Wong, R.T., Idriss, I.M., and Tokimatsu, K., “Moduli and Damping Factor for Dynamic Analysis of Cohesionless Soils,” Journal of Geotechnical Engineering Division, ASCE, Vol. 112, No. 11, November, pp. 1016-1032 (1986).
    19. Silver, M.L., and Seed, H.B., “Deformation Characteristics of Sands Under Cyclic Loading,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM8, pp. 1081-1098 (1971).
    20. Silver, M.L., “Load Deformation and Strength Behavior of Soils under Dynamic Loading,” State-of-the-Art Paper, Proceedings of International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamics, St. Louis, Vol. 3, April, pp. 873-894 (1981).
    21. Skoglound, F.R., Marcuson, W.F., III, and Cunny, R.W., “Evaluation of Resonant Column Test Devices,” Journal of Geotechnical Engineering Division, ASCE, Vol. 102, No. GT11, Nov., pp.1147-1158 (1976).
    22. SW-AJA, “Soil Behavior Under Earthquake Loading Conditions, State of the Art Evaluation of Soil Characteristics for Seismic Response Analyses: Prepared Under Subcontract,” No. 3354, Union Carbide Corp., for U.S. Atomic Energy Commission, Contract No. W-7405-eng-26, January. (1972).
    23. Tastsuoka, F., Iwasaki, T., and Takagi, Y., “Hysteretic Damping of Sands Under Cyclic Loading and Its Relation to Shear Moduli,” Soils and Foundations, JSSMFE, Vol. 18, No. 2, June, pp. 23-40 (1978).
    24. Thevanayagam, S., and Martin, G.R., “Liquefaction in Silty Soils-Screening and Remediation Issues,” Soil Dynamics and Earthquake Engineering, Vol. 22, pp. 1035-1042 (2002).
    25. Wu, S., Gray, D.H., and Richart, F.E., Jr., “Capillary Effects on Dynamic Modulus of Sands and Silts,” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 9, pp. 1188-1203 (1984).
    26. 王金山,「共振柱試驗之土壤動力性質」,碩士論文,國立中央大學土木工程研究所,(2004)。
    27. 吳偉特,「土壤動力學與大地工程」,地工技術雜誌,9期,pp. 5-19,(1985)。
    28. 何文傑,「砂土承受垂直振動變形之初步研究」,碩士論文,成功大學土木工程學系,(2007)。
    29. 李偉榮,「細料含量對飽和粉質砂土動態行為影響之研究」,碩士論文,成功大學土木工程學系,(2010)。
    30. 林育正,「垂直/扭轉共振柱法應用於量測土壤動態特性之研究」,碩士論文,國立成功大學土木工程研究所,(1993)。
    31. 林靜怡,「細粒料對粉土細砂小應變勁度之影響」,碩士論文,國立交通大學土木工程學系,(2003)。
    32. 林鴻州、李廣信、于玉貞、呂禾,「基質吸力對非飽和土抗剪強度的影響」,岩土力學,第28卷,9期,pp. 1931-1936,(2007)。
    33. 徐瑞旻,「共振柱試驗程式視窗化之研究」,碩士論文,國立成功大學土木工程學系,(2002)。
    34. 陳堯中、游步上,「台北盆地粉質砂土之剪力模數與阻尼比」,中國土木水利工程學刊,第二卷,3期,pp. 213-223,(1990)。
    35. 陳百騏,「三軸應力與單剪應力下台北盆地砂性土壤之剪力模數與阻尼比」,國立台灣大學土木工程研究所,碩士論文,(1996)。
    36. 陳昱憲,「頻率比對台北盆地含細料砂土動態性質與地盤反應分析初步研究」,碩士論文,國立台灣大學土木工程研究所,(1998)。
    37. 陳志瑋,「細料含量對乾粉質砂土動態行為影響之研究」,碩士論文,國立成功大學土木工程研究所,(2010)。
    38. 黃信祥,「以現地冰凍土壤求得之剪力模數評估土壤之液化阻抗」,碩士論文,國立台灣科技大學營建工程系,(2003)。
    39. 黃耀道,「台灣中西部粉土質砂土液化行為分析」,博士論文,國立交通大學土木工程系,(2007)。
    40. 黃安斌,「台灣中西部粉/砂土壤液化行為之研究心得」地工技術雜誌,121期,pp. 5-16,(2009)。
    41. 鄧勝益,「共振柱試驗自動化之探討與研究」,碩士論文,國立成功大學土木工程研究所,(1995)。
    42. 鄭鈺諠,「不飽和夯實土壤之動態性質」,碩士論文,國立中央大學土木工程研究所,(2010)。
    43. 劉全修,「台灣中南部粉土質細砂的壓縮性」,碩士論文,國立交通大學土木工程研究所,(2008)。

    下載圖示 校內:立即公開
    校外:2012-08-24公開
    QR CODE