簡易檢索 / 詳目顯示

研究生: 莊文碩
Zhuang, Wen-Shuo
論文名稱: 具渦流引發子流道之模組式分合流道微混合器
Modular split-and-recombine micromixers with swirl-inducing subchannels
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 流體混合引發渦流分合流道模組粒子反向追跡蒙地卡羅法
外文關鍵詞: mixing, induced eddy, split-and-recombination modules, particle tracking, Monte Carlo simulation
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究探討具有對齊入口流道與分合流道模組的微混合器,將比較三種模組,分別為三維彎曲不對齊匯流流道模組、平面彎曲不對齊匯流流道模組及平面彎曲對齊匯流流道模組。由於網格法在高培克萊特數下會產生數值擴散問題而高估混合度,因此本研究以反向粒子追跡結合近似擴散模式及蒙地卡羅法模擬,並以前者之模擬結果分析不同雷諾數下流體的流動與混合情形。為了驗證數值模擬,使用微影技術製作微混合器,並利用共軛焦顯微鏡觀察流體的混合結果。研究結果顯示,在較低雷諾數下流體的混合以擴散為主,若以圓弧轉彎的方式分割流體可將流體保持其進入模組子流道之前的濃度分佈形態,經過平面彎曲對齊匯流流道模組的對齊接頭匯流後兩不同流體會以相間的方式匯合,使其接觸面積大幅增加,而促進混合。在較高雷諾數下流體經過蜿蜒流道將產生離心力,引起狄恩渦流,這些渦流使流體交界面產生拉伸折疊效應,而提升混合效率。若匯流處再以不對齊接頭進行匯流,流體注入主流道將產生一渦流,此渦流對流體的混合幫助很大。在雷諾數100時,使用4組三維彎曲不對齊匯流流道模組,壓降可在合理範圍內,且流道出口的混合度大於0.9。

    關鍵字:流體混合,引發渦流,分合流道模組,粒子反向追跡,蒙地卡羅法

    SUMMARY
    This study explores micromixers with aligned inlet channels and split-and-recombination mixing modules. We compare the mixing performance of three modules, including three-dimensional curved unaligned recombination channel module (3DCURCM), planar curved unaligned recombination channel module (PCURCM) and planar curved aligned recombination channel module (PCARCM) by using a grid method, the particle-tracking simulation with approximate diffusion model (ADM) and the Monte Carlo simulation. Because of balance between precision and efficiency, we mainly use the particle-tracking simulation with ADM to analyze the flow and mixing of fluids at different Reynolds numbers. To verify numerical simulation, we used lithography to make a micromixer and use confocal microscopy to acquire the image for the mixing and flow in the micromixer. The simulation results show that the mixing of fluids at the lower Reynolds number is dominated by diffusion. If the fluid is divided by circular turn, the fluid can maintain its concentration distribution before entering the sub-channel of the module. After flowing through a PCARCM, the two different fluids will merge in phase, which greatly increases the contact area and promotes mixing. At higher Reynolds numbers, the fluid will generate centrifugal force and Dean vortex through curved channel, which improves mixing efficiency. If the confluence is achieved by an unaligned joint, the fluid will create a vortex in the main mixing channel, which will improve the mixing of the fluid. When the Reynolds number is 100, using four 3DCURCM’s, the pressure drop can be within a reasonable range and the mixing degree of the flow at outlet is greater than 0.9.

    Key words: mixing, induced eddy, split-and-recombination modules, particle tracking, Monte Carlo simulation

    目錄 摘要 i Extended Abstract ii 致謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 符號表 xx 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-3 研究動機 3 1-4 研究方法 4 1-5 本文架構 4 第二章 流道幾何形狀與數值模擬方法 5 2-1微混合器之設計 5 2-2 基本假設,統御方程式與邊界條件 6 2-3 無因次分析 8 2-4網格法數值模擬 10 2-5 流體粒子的反向追跡與近似擴散模式 11 2-5-1 流體粒子反向追跡 12 2-5-2 近似擴散模式 13 2-6 反向隨機漫步蒙地卡羅模擬方法 13 2-7 混合度 14 第三章 微混合器製作與實驗觀察 16 3-1 實驗流程 16 3-1-1 光罩製作 16 3-1-2 母模製作 16 3-1-3 表面粗度儀量測流道高度與寬度 18 3-1-4 翻模製作微混合器 19 3-1-5 微流道氧電漿接合與管線黏合 19 3-2 實驗觀測 19 3-2-1 工作流體與微量式注射幫浦 19 3-2-2 實驗影像擷取 20 第四章 結果與討論 21 4-1 網格法測試 21 4-2流體粒子反向追跡與近似擴散模式目標截面粒子數目測試 22 4-3反向隨機漫步蒙地卡羅模擬之驗證 23 4-4網格法與流體粒子反向追跡結合近似擴散模式之比較 23 4-5反向隨機漫步蒙地卡羅模擬方法與流體粒子反向追跡結合近似擴散模式之比較 23 4-6三種不同模組的微混合器在Re=1、Re=100下的混合情況 24 4-7三種不同模組的微混合器在各截面的混合度 25 4-8數值模擬與實驗結果 26 4-9不同雷諾數下平面彎曲對齊匯流流道模組微混合器的流動與混合機制 26 4-10 不同雷諾數下三維彎曲不對齊匯流流道模組微混合器的流動與混合機制 27 4-11 不同雷諾數下具四個三維彎曲不對齊匯流流道模組的微混合器之比較 29 4-12雷諾數對三維彎曲不對齊匯流流道模組及平面彎曲對齊匯流流道模組的微混合器之混合的影響 30 第五章 結論與未來展望 32 5-1 結論 32 5-2 未來展望 32 參考文獻 33 附錄A 粒子追跡之速度內插與近似擴散模式 37 A-1流體粒子之速度內插 37 A-2目標截面之濃度擴散模式 39

    參考文獻
    [1] A. Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, no. 1-6, pp. 244-248, 1990.
    [2] N.-T. Nguyen and Z. Wu, “Micromixers - a review,” Journal of Micromechanics and Microengineering, vol. 15, no. 2, R1-R16, 2005.
    [3] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, “Passive mixers in microfluidic systems: A review,” Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
    [4] N. Kockmann, C. Föll, and P. Woias, “Flow regimes and mass transfer characteristics in static micro mixers,” Proceedings of International Society for Optics and Photonics, vol. 4982, pp. 319-330, 2003.
    [5] D. Bothe, C. Stemich, and H.-J. Warnecke, “Fluid mixing in a T-shaped micro-mixer,” Chemical Engineering Science, vol. 61, no. 9, pp. 2950-2958, 2006.
    [6] M. A. Ansari, K.-Y. Kim, K. Anwar, and S. M. Kim, “Vortex micro T-mixer with non-aligned inputs,” Chemical Engineering Journal, vol. 181-182, pp. 846- 850, no. 2, 2012.
    [7] C. A. Cortes-Quiroz, A. Azarbadegan, and M. Zangeneh, “Effect of channel aspect ratio of 3-D T-mixer on flow patterns and convective mixing for a wide range of Reynolds number,” Sensors and Actuators B: Chemical, vol. 239, no. 2, pp. 1153-1176, 2017.
    [8] W. R. Dean, “Note on the motion of a fluid in a curved pipe,” Philosophical Magazine, vol. 4, no. 20, pp. 208-223, 1927.
    [9] F. Jiang, K. S. Drese, S. Hardt, M. Küpper, and F. Schöfeld, “Helical flows and chaotic mixing in curved micro channel,” AIChE Journal, vol. 50, no. 9, pp. 2297-2305, 2004.
    [10] N. Kockmann, M. Engler, D. Haller, and P. Woias, “Fluid dynamics and transfer processes in bended microchannels,” Heat Transfer Engineering, vol. 26, no. 3, pp. 71-78, 2005.
    [11] C. Nonino, S. Savino, and S. D. Giudice, “Numerical assessment of the mixing performance of different serpentine microchannels,” Heat Transfer Engineering, vol. 30, no. 1-2, pp. 101-112, 2009.
    [12] C.-Y. Wu, and R.-T. Tsai, “Fluid mixing via multidirectional vortices in converging–diverging meandering microchannels with semi-elliptical side walls,” Chemical Engineering Journal, vol. 217, pp. 320-328, 2013.
    [13] F. Garofalo, A. Adrover, S. Cerbelli, and M. Giona, “Spectral Characterization of Static Mixers. The S-Shaped Micromixer as a Case Study.” AIChE Journal, vol. 56, no.2, pp. 318-335,2010.
    [14] W. Ruijin, L. Beiqi, S. Dongdong, and Z. Zefei “Investigation on the splitting-merging passive micromixer based on Baker's transformation,” Sensors and Actuators B: Chemical, vol. 249, pp. 395-404, 2017.
    [15] T. Matsunaga, H. J. Lee, and K. Nishino, “An approach for accurate simulation of liquid mixing in a T-shape micromixer,” Lab on a Chip, vol. 13, no. 8, pp. 1515-1521, 2013.
    [16] V. Özceyhan, M. Sen, “Particle-tracking random-walk computation of high-Peclet-number convection,” Numerical Heat Transfer, Part A: Applications, vol. 50, no. 7, pp. 607-622, 2006.
    [17] Z.-W. Liu, “Micromixer with non-aligned inlets and split-and-recombination module junctions,” Master's Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
    [18] C. Galletti, M. Roudgar, E. Brunazzi, and R. Mauri, “Effect of inlet conditions on the engulfment pattern in a T-shaped micro-mixer,” Chemical Engineering
    Science, vol. 185-186, no. 3, pp. 300-313, 2012.
    [19] T. Matsunaga, K. Shibata, K. Murotani, and S. Koshizuka, “Hybrid grid-particle method for fluid mixing simulation,” Computational Particle Mechanics, vol. 2, no. 3, pp. 233-246, 2015.
    [20] S.-C. Lin, “Numerical simulation of fluid mixing in micromixers with quasi-omega-shaped modules based on zigzag channels,” Master's Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2018.
    [21] H. Bockhorn, D. Mewes, W. Peukert, and H. J. Warnecke, Micro and Macro Mixing, Berlin, Germany: Springer, 2010.
    [22] C. Nonino, S. Savino, and S. D. Giudice, “Numerical assessment of the mixing performance of different serpentine microchannels,” Heat Transfer Engineering, vol. 30, no. 1-2, pp. 101-112, 2009.
    [23] A. Nealen, “An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation,” Technische Universität Darmstadt, Tech. Rep., 2004, URL:http://www.nealen.com/projects.
    [24] J. L. Bentley, “Multidimensional binary search trees used for associative Searching,” Communications of the Association for Computing Machinery, vol. 18, no. 9, pp. 509-517, 1975.
    [25] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal algorithm for approximate nearest neighbor searching in fixed dimensions,” Journal of the Association for Computing Machinery, vol. 45, no. 6, pp. 891-923, 1998.
    [26] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.
    [27] Y.-C. Chien, “Micromixers with double T-junction and split-and-and recombine sub-channels,” Master's Thesis, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan, 2016.
    [28] T. Most and C. Bucher, “A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions,” Structural Engineering and Mechanics, vol. 21, no. 3, pp. 315-332, 2005.
    [29] Z. Wu, N.-T. Nguyen, and X. Huang, “Nonlinear diffusive mixing in microchannels: theory and experiments,” Journal of Micromechanics and Microengineering, vol. 14, no. 4, pp. 604-611, 2004.

    下載圖示
    2024-08-29公開
    QR CODE