| 研究生: |
余政倫 Yu, Cheng-lun |
|---|---|
| 論文名稱: |
以聚乙烯二醇修飾之奈米磁性微脂粒之熱效應探討 Polyethylene glycol modified phospholipid-nanomagnetic particles for the investigation of thermal effect |
| 指導教授: |
許梅娟
Syu, Mei-jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 太平洋紫杉醇 、熱效應 、二氧化矽 、奈米磁性粒子 、微脂粒 |
| 外文關鍵詞: | nanomagnetic particle, liposome, silica, thermal effect, paclitaxel |
| 相關次數: | 點閱:126 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著奈米生物科技的急速發展,奈米磁性材料被廣泛應用於生物醫學技術之中;其獨特之小尺寸及超順磁特性,適與其他生物相容性材料結合為奈米磁性複合粒子,在外加磁場下可作為藥物載體進行靶向治療,並配合產生之熱效應,對腫瘤細胞的治療極具研究價值。本研究將分別製備與探討奈米磁性複合材料之磁性微脂粒與磁性二氧化矽顆粒,並進一步研究其於外加磁場下的熱效應;最後測試其用作藥物載體時對太平洋紫杉醇(paclitaxel)之攜帶與釋放行為。
本研究以共沉澱法合成奈米磁性粒子,並以穿透式電子顯微鏡(transmission electron microscopy, TEM)觀察其平均粒徑約9 nm;而經過磷脂膽鹼(1,2-dipalmitoyl-sn-glycero-3-phocholine, DPPC)修飾,可提升奈米磁性粒子在有機溶劑中的分散效果;另外檸檬酸的修飾則可以避免奈米磁性粒子在水溶液中的聚集情形。進一步以聚乙烯二醇與磷脂乙醇胺(1,2-dimytistoyl-sn-glycerol-3-phosphoethanolamine, DMPE)反應合成之PEG-DMPE複合物製備磁性微脂粒,並以TEM觀察其粒子形態。
除此之外,以溶膠凝膠法合成磁性二氧化矽顆粒,以奈米磁性粒子為成長晶核,使四以氧基矽烷(tetraethoxysilane, TEOS)沿其表面向外成長,得到包覆奈米磁性粒子之磁性二氧化矽顆粒。經TEM影像分析,確知二氧化矽顆粒確有包覆奈米磁性粒子的能力。
在本研究中,探討奈米磁性粒子、磁性微脂粒與磁性二氧化矽顆粒在外加磁場下之升溫能力,以了解未來熱治療的可行性。太平洋紫杉醇為一種口服無療效且極難溶於水的抗癌藥物,必須以特殊溶劑進行投藥,但使用之溶劑往往會引發嚴重的副作用;故本研究以所製備之奈米複合材料做為此藥物之載體,探討其包覆與釋放藥物的能力。
Nano-biotechnology can improve the developments on biomedicine. Nanomagnetic particle has attracted a lot of attentions because of their potential for hyperthermia anticancer treatment and drug carriers. In this study, magnetic liposome and magnetic silica were synthesized and characterized. By applying the electromagnetic field, temperature raised by the nanomagnetic materials was induced and monitored by the optical fiber thermometer. Additionally, paclitaxel, and effective drug in treating a variety of cancers was encapsulated in the liposome and silica particle.
Nanomagnetic particle was synthesized by co-precipitation and the average size of the Fe3O4 nanoparticles was about 9 nm which could be observed by transmission electron microscopy (TEM). Upon the modification with DPPC (1,2-dialmitoyl-sn-glycero-3-phosphocholine), the nanoparticles could achieve much better dispersion in organic solution. On the other hand, the nanomagnetic particle was also stabilized by citric acid to avoid aggregation in water solution.The PEG (polyethylene glycol) modified nanomagnetic liposome was prepared and the TEM images of magnetic liposome were observed. In this work, DMPE (1,2-dimytistoyl-sn-glycerol-3-phosphoethanolamine) was mixed with PEG to from the PEG-DMPE. The PEG-DMPE was further used to synthesize the PEG modified magnetic liposome.
The magnetic silica particle was synthesized by the so-gel method, coating nanomagnetic particle with silica by using magnetic fluids as seeds. Silica was formed on the surface of nanomagnetic particle through by hydrolysis and condensation of TEOS (tetraethoxysilane).
In this research, the nanomagnetic complexes were also exposed to an alternative magnetic field for the investigation of thermal effect, which is regarded to be one of the promising approaches in cancer therapy. Paclitaxel is orally inactive and has extremely low aqueous solubility. Inclusion of paclitaxel in liposomal formulations or silica particle has proved to be a good approach to improve the drug’s antitumor efficacy.
1. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,2005
2. 盧希鵬、馬振基,奈米材料技術地圖,國科會科學技術資料中心,P. 4,2003
3. D. L-pelecky and R.D. Rieke, Magnetic properties of nanostructured materials, Chemistry of Materials, 8, 1770-1783, 1996
4. S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles, Journal of the American Chemical Society, 126, 273-279, 2004
5. R. Asmatulu, M.A. Zalich, R.O. Claus, J.S. Riffle, Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields, Journal of Magnetism and Magnetic Materials, 292, 108-119, 2005
6. C.L. Lin, C.F. Lee, W.Y. Chiu, Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid, Journal of Colloid and Interface Science, 291, 411-420, 2005
7. T. Tepper, F. Ilievski, C.A. Ross, T.R. Zaman, R.J. Ram, S.Y. Sung, B.J. H. Stadler, Magneto-optical properties of iron oxide films, Journal of Applied Physics, 93(10), 6948-6950, 2003
8. B. Zelbi, A.S. Susha, G.B. Sukhorukov, A.L. Rogach, W.J. Parak, Magnetic targeting and cellular uptake of polumer microcapsules simultaneously functionalized with magnetic and luminescent nanocrystals, Langmuir, 21, 4262-4265, 2005
9. Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve, Synthesis and characterization of nanometer-size Fe3O4 and r-Fe2O3 particles, Chemistry of Materials, 8, 2209-2211, 1996
10. Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, P.N. Prasad, Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control, The Journal of Physical Chemistry B, 109, 3879-3885, 2005
11. A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26, 3995-4021, 2005
12. A. Ito, M. Shinkai, H. Honda, T. Kobayashi, Medical application of functionalized magnetic nanoparticles, Journal of Bioscience and Bioengineering, 100, 1-11, 2005
13. I. Safarik, M. Safarikova, Magnetic techniques for the isolation and purification of proteins and peptides, Biomagnetic Research and Technology, 2, 7-34, 2004
14. A.K. Gupta, A.S.G. Curtis, Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors, Biomaterials, 25, 3029-3040, 2004
15. J.W.M. Bulte, T. Douglas, B. Witwer, S.C. Zhang, E. Strable, B.K. Lewis, Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells, Nature Biotechnology, 19, 1141-1147, 2001
16. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, B. von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, Journal of Magnetism and Magnetic Materials, 293, 483-496, 2005
17. K.L. Ang, S. Venkatraman, R.V. Ramanujan, Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy, Materials Science and Engineering C, 27, 347-351, 2007
18. F. Matsuoka, M. Shinkai, H. Honda, T. Kubo, T. Sugita, Hyperthermia using magnetite cationic liposomes for hamster osteosarcoma, Biomagnetic Research and Technology, 2(3), 1-6, 2004
19. T. Nakaya, Y.J. Li, Phospholipid polymers, Progress in Polymer Science, 24, 143-181, 1999
20. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, Garland Science, 2004
21. I.M. Chu, Drug Delivery Systems, 國立清華大學生醫工程課程資料, 2005
22. W.W. Sulkowski, D. Pentak, K. Nowak, A. Sulkowska, The influence of temperature, cholesterol content and pH on liposome stability, Journal of Molecular Structure, 3, 737-747, 2005
23. J. Sabin, G. Prieto, P.V. Messina, J.M. Ruso, R.H. Alvarez, F. Sarmiento, On the effect of Ca2+ and La3+ on the colloidal stability of liposomes, Langumir, 21, 10968-10975, 2005
24. G. Cevc, H. Richardsen, Lipid vesicles and membrane fusion, Advanced Drug Delivery Reviews, 38, 207-232, 1999
25. M.N. Jones, The surface properties of phospholipid liposome system and their characterization, Journal of Colloid of Interface Science, 54, 93-138, 1995
26. K. Hashizaki, H. Taguchi, C. Itoh, H. Sakai, M. Abe, Y. Saito, N. Ogawa, Effect of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the permeability of liposomal bilayer membranes, Chemical and Pharmaceutical Bulletin, 51, 815-820, 2003
27. 黃佳琪,以磷脂質修飾之奈米顆粒之製備與性質鑑定,國立成功大學化學工程學系碩士論文,2006
28. J. Giri, S.G. Thakuta, J. Bellare, A.K. Nigam, D. Bahadur, Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles, Journal of Magnetism and Magnetic Materials, 293, 62-68, 2005
29. S. Lesieur, M.S. Martina, J.P. Fortin, C. Mnager, O. Clment, Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging, Journal of the American Chemical Society, 127, 10676-10685, 2005
30. Z. Ma, H. Liu, Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine, China Particuology, 5, 1-10, 2007
31. 毛賢為,以環糊精修飾之二氧化矽-磁性奈米粒子包覆批落卡藥物之探討,國立成功大學化學工程學系碩士論文,2007
32. V.S. Salgueirio-Macerira, M.A. Correa-Duarte, M. Spasova, M. Farle, Composite silica spheres with magnetic and luminescent functionalities, Advanced Functional Materials, 16, 509-514, 2006
33. M.F. Shieh, I.M. Chu, C.J. Lee, P. Kan, D.M. Hau, J.J. Shieh, Liposomal delivery system for taxol, Journal of Fermentation Bioengineering, 83, 1, 87-90, 1997
34. E.K. Rowinsky, R.C. Donehower, Paclitaxel (Taxol) Drug Therapy, 332, 1004-1014, 1995
35. A.K. Singla, A. Garg, D. Aggarwal, Paclitaxel and its formulations, International Journal of Pharmaceutics, 235, 179-192, 2002
36. 王偉書,抗癌新藥:太平洋紫杉醇,財團法人台灣癌症臨床研究發展基金會,2000
37. M. Ma, Y. Wu, J. Zhou, Y. Son, Y. Zhang, N. Gu, Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field, Journal of Magnetism and Magnetic Materials, 268, 33-39, 2004