簡易檢索 / 詳目顯示

研究生: 曾能政
Tseng, Neng-Cheng
論文名稱: 交談式水下推進噴嘴性能分析程式之設計
Design of an Interactive Computer Program for Performance Analysis of Underwater Propulsion Nozzles
指導教授: 王逸君
Wang, Yi-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 121
中文關鍵詞: 性能分析介面程式噴嘴水下推進
外文關鍵詞: underwater, nozzle, propulsion, Visual Basic, Fortran
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的數值分析程式,由於沒有適當的資料結構來管理資料個體間之相關性,不僅使程式功能的彈性受到極大的限制,且常需耗費大量的時間在於依照輸入檔的格式建立輸入檔,有修改不易以及不容易掌握輸出資料是否正確的缺點,甚至因為不了解資料結構的意義,而發生重大的錯誤。本研究旨在建立一交談式水下推進噴嘴性能分析程式,以視窗架構顯示系統,改善人與電腦之操作介面,使得噴嘴設計者,無需記憶繁雜的輸入格式,而能輕易的掌握輸入及輸出結果。
    本研究以視覺化軟體 Visual Basic結合Fortran程式寫成的執行檔及微軟視窗(Microsoft Windows)環境,建立一套適用於個人電腦,並具有前置處理程式(輸入資料視窗系統) 、核心程式(流場分析之 Fortran 程式) 、及後置處理程式(結果輸出視窗系統)之交談式噴嘴流場及性能分析程式。噴嘴之流場計算係以一維兩相汽液雙流體模型為基礎,由於一維模型簡單實用,所需之計算時間較短,因此特別適用於噴嘴之初步設計。計算結果將提供兩相流體之速度、壓力、氣泡尺寸之變化及空泡比等定量資料,以作為噴嘴細部設計及推進性能之評估參考。

    Traditional programs of numerical analysis do not have appropriate data structures to manage the correlation between individual items. This causes the extreme limitation of flexibility of the programs and wastes lots of time in establishing input files according to the designed formats. Moreover, the data files of these are hard to be modified. The output information may be misunderstood, or even are misused to cause fatal error. This study aims at the design of an interactive computer program for performance analysis of underwater propulsion nozzles. The program is constructed under the windows system and, therefore, offers a user-friendly operational interface. The nozzle designers do not need to memorize the complicated data formats and can handle the input and output files easily.

    The present program integrates the environment of the Microsoft Windows and Fortran codes using Visual Basic. The whole program consists of a pre-processor (a window system for data input), core programs (Fortran codes for flow analysis), and a post-processor (a window system for data output). The flows in the nozzle are calculated using a one-dimensional gas/liquid two-fluid model. The simplicity and practicality of the one-dimensional model assure less computational time and, therefore, the suitability for initial design of the nozzles. Distributions of the two-phase velocities, pressure, bubble size, and void fraction are presented based on the computational results. These data can then be used to refine the design of the nozzle and to evaluate its propulsion performance.

    頁數 中文摘要…………………………………………………………Ⅰ 英文摘要…………………………………………………………Ⅱ 誌謝………………………………………………………………Ⅲ 目錄………………………………………………………………Ⅳ 表目錄……………………………………………………………Ⅴ 圖目錄……………………………………………………………Ⅵ 符號說明…………………………………………………………Ⅷ 第一章 緒論………………………………………………………1 第二章 理論模型分析……………………………………………8 第三章 流場分析之數值方法……………………………………24 第四章 交談式水下推進噴嘴性能分析程式簡介………………28 第五章 結果與討論………………………………………………42 第六章 結論………………………………………………………68 參考文獻…………………………………………………………69 附錄 交談式水下推進噴嘴性能分析程式之原始程式………………72

    1. Albagli, D. and Gany, A., (1992). ”Analysis of a high speed bubbly waterjet,” AIAA Paper 92-3380,28th AIAA/SAE/ASME/ASEE Joint Propulsion Conf., Nashville, TN

    2. Albagli, D. and Gany, A., (2003). “High speed bubbly nozzle flow with heat,mass, and momentum interactions,” International Journal of Heat and Mass Transfer, 6(11), pp.1993~2003.

    3. Biesheuvel, A. and van Wijngaarden, L., (1984). “Two-phase flow equations for a dilute dispersion of gas bubbles in liquid,” Journal of Fluid Mechanics, 148, pp.301~318.

    4. Brennen, C.E., (1995). “Cavitation and Bubble Dynamics,” Oxford University Press.

    5. Gany, A., (2001). “Workshop on Modern Propulsion Technologies,” 國立成功大學航空太空工程研究所

    6. Henry, R.E. and Fauske, H.K., (1971). “The two-phase critical flow of one- component mixtures in nozzles, orifices, and short tubes,” ASME Journal of Heat Transfer, 93, pp.179~187.

    7. Ishii, R., Umeda, Y., Murata, S. and Shishido, N., (1993). “Bubbly flows through a converging-diverging nozzle,” Physics of Fluids A, 5(7), pp.1630~1643.

    8. Kameda, M. and Matsumoto, Y., (1996). “Shock waves in a liquid containing small gas bubbles,” Physics of Fluids, 8(2), pp.322~335.

    9. Liu, T.J., (1997). ”Investigation of the wall shear stress in vertical bubbly flow under different bubble size conditions,” International Journal of Multiphase Flow, 23(6), pp.1085~1109.

    10. Marie, J.L., (1987). “Modelling of the skin friction and heat transfer in turbulent two-component bubbly flows in pipes,” International Journal of Multiphase Flow, 13(3), pp.309~325.

    11. Moore, D.W., (1963). “The boundary layer on a spherical gas bubble,” Journal of Fluid Mechanics, 16, pp.161~176.

    12. Muir, J.F. and Eichhorn, R., (1963). “Compressible flow of an air-water mixture through a vertical two-dimensional converging-diverging nozzle,” Proceedings of the 1963 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, pp.183~204.

    13. Tangren, R.F., Dodge, C.H., and Seifert, H.S., (1949). “Compressibility effects in two-phase flow,” Journal of Applied Physics, 20(7), pp.637~645.

    14. van Wijngaarden, L., (1972). “One-dimensional flow of liquids containing small gas bubbles,” Annual Review of Fluid Mechanics, 4, pp.369~396.

    15. Wang, Y.C. (2000). “Stability analysis of one-dimensional steady cavitating nozzle flows with bubble size distribution,” ASME Journal of Fluids Engineering, 122, pp.425~430.

    16. Wang, Y.C. and Brennen, C.E. (1998). “One-dimensional bubbly cavitating flows through a converging-diverging nozzle,” ASME Journal of Fluids Engineering, 120, pp.166~170.

    17. Wang, Y.C. and Chen, E., (2002). ”Effects of phase relative motion on critical bubbly flows through a converging-diverging nozzle,” Physics of Fluids A, 14(9), pp.3215~3223.

    18. Watanabe, M. and Prosperetti, A., (1994). “Shock waves in dilute bubbly liquids,” Journal of Fluid Mechanics, 274, pp.349~381.

    19. Zhang, D.Z. and Prosperetti, A., (1994). ”Ensemble phase-averaged equations for bubbly flows,” Physics of Fluids A, 6(9), pp.2956~2970.

    20. 陳依緒, 收縮-擴張噴嘴中之臨界汽泡流。 成大機械碩士論文。 2001.

    下載圖示 校內:立即公開
    校外:2004-01-29公開
    QR CODE