簡易檢索 / 詳目顯示

研究生: 黃敬家
Huang, Ching-Chia
論文名稱: 星狀聚賴氨酸嵌段疏水寡聚胺酸的成膠性探討
Hydrogelation of star-shaped poly(L-Lysine) tethered with different hydrophobic oligopeptides
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 115
中文關鍵詞: 水膠聚胺基酸兩親性星狀高分子
外文關鍵詞: hydrogel, polypeptide, amphiphilic, star-shaped polymer
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用1,1,3,3-四甲基胍作為促進劑,使不同臂數之多元醇對α-胺基酸N-羧酸酐進行開環聚合合成一系列六臂和十二臂之雙嵌段聚胺基酸,並將其製備成水膠。雙嵌段聚胺基酸以賴胺酸做為第一鏈段,以3:1的比例分別嵌段不同疏水性寡聚胺酸(芐基半胱胺酸、苯丙胺酸、酪氨酸與芐基酪氨酸)。藉由調控不同臂數及嵌段不同疏水性寡聚胺酸,來探討其對自組裝結構及成膠性質的影響。臨界成膠濃度測試及水膠的流變性質測試都顯示,不同臂數及嵌段不同疏水性寡聚胺酸對兩者有很大的影響。因為十二臂水膠的不對稱型及立體障礙,十二臂的水膠有著較高的臨界成膠濃度及較低的儲存模量。其中六臂聚賴胺酸嵌段聚芐基半胱胺酸(6s-PLL15-b-PBLC6)有本研究中最低的成膠濃度(2 wt%)及最高的儲存模量(約6500 Pa)。除此之外,多數的水膠都具有優異的回復性質。以FT-IR及CD光譜分析發現,疏水性寡聚胺酸能夠形成幫助水膠凝膠化之β-折版構型。從XRD中也確認了苯環之間π-π堆疊的峰值。綜上所述,我們推測水膠的成膠性及其機械強度來自於分子內及分子間的氫鍵作用力、疏水性作用力及π-π堆疊作用力。最後我們也藉由SAXS及SEM分別分析雙嵌段聚胺基酸水膠在微觀自主裝及巨觀聚集的結構。可以發現藉由嵌段不同疏水性寡聚胺酸,雙嵌段聚胺基酸水膠會自組裝形成球型或圓板型,隨著水膠濃度的下降,雙嵌段聚胺基酸會吸水膨潤使其尺寸變大。而在SEM巨觀視野下,雙嵌段聚胺基酸水膠會形成多孔的3D結構或是類似於窗簾的平面結構。

    A series of 6-armed and 12-armed diblock copolypeptides were synthesized to investigate their self-assembly and hydrogelation behavior in water. These star-shaped diblock copolypeptides were synthesized by N-carboxyanhydrides (NCAs) ring opening polymerization using TMG to promote the alcohol initiators. The diblock copolypeptides comprised of poly-L-Lysine (PLL) as 1st block and separately tethered with four different hydrophobic oligopeptides (L-Phenylalanine, S-Benzyl-L-Cysteine, O-Benzyl-L-Tyrosine and L-Tyrosine) at the ratio of 3:1. All the star-shaped copolypeptides except 12s-PLL16-b-PLY3.7 were hydrogel formable. Notably, 6s-PLL15-b-PBLC6 had the lowest critical gel concentration (CGC) of 2%. The CGC and mechanical strength showed strong dependence on arm number and different hydrophobic residue that attached on PLL. Also, some of the hydrogel exhibited shear-thinning and good recovery behavior. Characterization of CD spectroscopy and FT-IR confirm the coexistence of random coil and β-sheet/β-turn conformation. XRD analysis indicated the presence of π-π stacking. We suggested that hydrogel formation was driven by the delicate balance between hydrogen bonding, π-π stacking and hydrophobic interaction. Also, β-motifs conformation induced by hydrophobic oligopeptide was favorable for gelation and could increase the mechanical strength of hydrogel. From SAXS and SEM analysis, we found that diblock polypeptide with differently tethered hydrophobic oligo peptide had strong influence on both the microscopic and macroscopic structure. Polypeptides would self-assembled into spherical or flat disk structure, and consequently aggregated into 3D porous or curtain-like structures. In conclusion, this study illustrated the tunability of polypeptide hydrogels by varying the arm number or hydrophobic oligopeptides.

    Abstract I 中文摘要 II Acknowledgement III Contents V Content of tables VIII Content of figures IX Chapter 1: Introduction 1 1.1 Preface 1 1.1.1 Biomedical materials 1 1.1.2 Polypeptides 2 1.2 Research motivation 3 Chapter 2: Literature review 4 2.1 Polypeptides 4 2.1.1 Amino acid 4 2.1.2 Different structures of protein 4 2.2 Polymerization of amino acids 6 2.2.1 Synthesis of N-carboxy anhydrides 6 2.2.2 Ring opening polymerization of N-carboxy anhydrides 7 2.3 Polypeptide hydrogels 10 2.3.1 Mechanism of hydrogel formation 10 2.3.2 Different types of polypeptide hydrogels 13 2.4 Dendrimers 18 Chapter 3: Experimental procedure and methods 20 3.1 Materials 20 3.2 Experimental instruments and principles 21 3.2.1 Nuclear magnetic resonance spectrometer (NMR) 21 3.2.2 Gel permeation chromatography (GPC) 21 3.2.3 Fourier-transform infrared spectroscopy (FT-IR) 22 3.2.4 Small-angle X-ray scattering (SAXS) 23 3.2.5 Rheometer 23 3.2.6 X-ray diffraction (XRD) 24 3.2.7 Circular dichroism (CD) 24 3.2.8 Scanning electron microscope (SEM) 25 3.3 Synthesis of polypeptides 26 3.3.1 Preparation of anhydrous solvents 26 3.3.2 Synthesis of different N-carboxyanhydrides (NCAs) 27 3.3.3 Ring opening polymerization of N-carboxyanhydrides (NCAs) using different alcohol initiators 28 3.3.4 Deprotecting Z group of Lysine 29 3.3.5 Deprotecting both Z group and Benzyl group 30 3.4 Hydrogel properties characterization 31 3.4.1 Hydrogelation analysis of di-block polypeptides 31 3.4.2 Secondary structure characterization of hydrogel 31 3.4.3 Macroscopic morphology of hydrogel 31 3.4.4 Microscopic stacking of hydrogel 32 3.4.5 Crystallinity of hydrogel 33 3.4.6 Mechanical properties analysis of hydrogel 34 Chapter 4: Results and discussion 35 4.1 Characterize the functional group and degree of polymerization of polypeptides 35 4.1.1 DP and functional groups characterization of 6s-polypeptides by NMR 35 4.1.2 DP and functional groups characterization of 12s-polypeptides by NMR 48 4.1.3 Degree of polymerization characterize by GPC 60 4.1.4 1H-13C 2D HSQC analysis of 6-armed poly-L-Lysine 61 4.1.5 1H-13C 2D HSQC analysis of 12-armed poly-L-Lysine 62 4.2 Hydrogelation test of polypeptides 65 4.2.1 Relation between critical gel concentration and polypeptides 66 4.2.2 Rheological behavior of polypeptides 67 4.3 Conformational analysis of polypeptide hydrogel 77 4.4 Crystallinity property of polypeptide hydrogel 83 4.5 Microscopic stacking of polypeptide hydrogels 85 4.6 Macroscopic structure of polypeptide hydrogels 99 Chapter 5: Conclusion 102 Reference 104

    (1) Ratner, B. D.; Bryant, S. J.Biomaterials: Where We Have Been and Where We Are Going. Annual Review of Biomedical Engineering. Annual Reviews July 16, 2004, pp 41–75. https://doi.org/10.1146/annurev.bioeng.6.040803.140027.
    (2) Nair, L. S.; Laurencin, C. T.Biodegradable Polymers as Biomaterials. Progress in Polymer Science (Oxford). Pergamon August 1, 2007, pp 762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017.
    (3) Deming, T. J.Polypeptide Hydrogels via a Unique Assembly Mechanism. Soft Matter 2005, 1 (1), 28–35. https://doi.org/10.1039/b500307e.
    (4) Shen, Y.; Zhang, S.; Wan, Y.; Fu, W.; Li, Z.Hydrogels Assembled from Star-Shaped Polypeptides with a Dendrimer as the Core. Soft Matter 2015, 11 (15), 2945–2951. https://doi.org/10.1039/c5sm00083a.
    (5) Jones, S.; Thornton, J. M.Principles of Protein-Protein Interactions. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences January 9, 1996, pp 13–20. https://doi.org/10.1073/pnas.93.1.13.
    (6) Schulz, G. E.; Schirmer, R. H.Patterns of Folding and Association of Polypeptide Chains; Springer, New York, NY, 1979; pp 66–107. https://doi.org/10.1007/978-1-4612-6137-7_5.
    (7) Kabsch, W.; Sander, C.Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen‐bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637. https://doi.org/10.1002/bip.360221211.
    (8) Sun, P. D.; Foster, C. E.; Boyington, J. C.Overview of Protein Structural and Functional Folds. Current protocols in protein science / editorial board, John E. Coligan ... [et al.]. Wiley-Blackwell 2004, p 1711. https://doi.org/10.1002/0471140864.ps1701s35.
    (9) Carlsen, A.; Lecommandoux, S.Self-Assembly of Polypeptide-Based Block Copolymer Amphiphiles. Curr. Opin. Colloid Interface Sci. 2009, 14 (5), 329–339. https://doi.org/10.1016/j.cocis.2009.04.007.
    (10) Deng, C.; Wu, J.; Cheng, R.; Meng, F.; Klok, H. A.; Zhong, Z.Functional Polypeptide and Hybrid Materials: Precision Synthesis via α-Amino Acid N-Carboxyanhydride Polymerization and Emerging Biomedical Applications. Progress in Polymer Science. Pergamon February 1, 2014, pp 330–364. https://doi.org/10.1016/j.progpolymsci.2013.10.008.
    (11) Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J. A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N. M.; Qiao, G. G.Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49 (14), 4737–4834. https://doi.org/10.1039/c9cs00738e.
    (12) Deming, T. J.Facile Synthesis of Block Copolypeptides of Defined Architecture. Nature 1997, 390 (6658), 386–389. https://doi.org/10.1038/37084.
    (13) Coin, I.; Beyermann, M.; Bienert, M.Solid-Phase Peptide Synthesis: From Standard Procedures to the Synthesis of Difficult Sequences. Nat. Protoc. 2007, 2 (12), 3247–3256. https://doi.org/10.1038/nprot.2007.454.
    (14) Mitchell, A. R.Bruce Merrifield and Solid-Phase Peptide Synthesis: A Historical Assessment. Biopolymers - Peptide Science Section. John Wiley and Sons Inc. January 1, 2008, pp 175–184. https://doi.org/10.1002/bip.20925.
    (15) Behrendt, R.; White, P.; Offer, J.Advances in Fmoc Solid-Phase Peptide Synthesis. Journal of Peptide Science. John Wiley and Sons Ltd January 1, 2016, pp 4–27. https://doi.org/10.1002/psc.2836.
    (16) Kuliopulos, A.; Walsh, C. T.Production, Purification, and Cleavage of Tandem Repeats of Recombinant Peptides; 1994; Vol. 116.
    (17) Leuchs, H.Ueber Die Glycin‐carbonsäure. Berichte der Dtsch. Chem. Gesellschaft 1906, 39 (1), 857–861. https://doi.org/10.1002/cber.190603901133.
    (18) Farthing, A. C.Synthetic Polypeptides. Part I. Synthesis of Oxazolid-2 : 5-Diones and a New Reaction of Glycine. J. Chem. Soc. 1950, No. 0, 3213–3217. https://doi.org/10.1039/jr9500003213.
    (19) Daly, W. H.; Poché, D.The Preparation of N-Carboxyanhydrides of α-Amino Acids Using Bis(Trichloromethyl)Carbonate. Tetrahedron Lett. 1988, 29 (46), 5859–5862. https://doi.org/10.1016/S0040-4039(00)82209-1.
    (20) Nagai, A.; Sato, D.; Ishikawa, J.; Ochiai, B.; Kudo, H.; Endo, T.A Facile Synthesis of N-Carboxyanhydrides and Poly(α-Amino Acid) Using Di-Tert-Butyltricarbonate. Macromolecules 2004, 37 (7), 2332–2334. https://doi.org/10.1021/ma0498464.
    (21) Koga, K.; Sudo, A.; Endo, T.Revolutionary Phosgene-Free Synthesis of α-Amino Acid N-Carboxyanhydrides Using Diphenyl Carbonate Based on Activation of α-Amino Acids by Converting into Imidazolium Salts. J. Polym. Sci. Part A Polym. Chem. 2010, 48 (19), 4351–4355. https://doi.org/10.1002/pola.24213.
    (22) Zhao, W.; Gnanou, Y.; Hadjichristidis, N.From Competition to Cooperation: A Highly Efficient Strategy towards Well-Defined (Co)Polypeptides. Chem. Commun. 2015, 51 (17), 3663–3666. https://doi.org/10.1039/c4cc09055a.
    (23) Zhao, W.; Gnanou, Y.; Hadjichristidis, N.Fast and Living Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides Triggered by an “Alliance” of Primary and Secondary Amines at Room Temperature. Biomacromolecules 2015, 16 (4), 1352–1357. https://doi.org/10.1021/acs.biomac.5b00134.
    (24) Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D.1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002–2012. https://doi.org/10.1021/acs.macromol.5b02520.
    (25) Li, J.; Xing, R.; Bai, S.; Yan, X.Recent Advances of Self-Assembling Peptide-Based Hydrogels for Biomedical Applications. Soft Matter. Royal Society of Chemistry February 20, 2019, pp 1704–1715. https://doi.org/10.1039/C8SM02573H.
    (26) Zhou, L.; Xi, Y.; Xue, Y.; Wang, M.; Liu, Y.; Guo, Y.; Lei, B.Injectable Self-Healing Antibacterial Bioactive Polypeptide-Based Hybrid Nanosystems for Efficiently Treating Multidrug Resistant Infection, Skin-Tumor Therapy, and Enhancing Wound Healing. Adv. Funct. Mater. 2019, 29 (22), 1806883. https://doi.org/10.1002/adfm.201806883.
    (27) Zhang, F.; Hu, C.; Kong, Q.; Luo, R.; Wang, Y.Peptide-/Drug-Directed Self-Assembly of Hybrid Polyurethane Hydrogels for Wound Healing. ACS Appl. Mater. Interfaces 2019, 11 (40), 37147–37155. https://doi.org/10.1021/acsami.9b13708.
    (28) Murphy, S.V.; Atala, A.3D Bioprinting of Tissues and Organs. Nature Biotechnology. Nature Publishing Group August 5, 2014, pp 773–785. https://doi.org/10.1038/nbt.2958.
    (29) Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R. R.Rapid Formation of a Supramolecular Polypeptide-DNA Hydrogel for In Situ Three-Dimensional Multilayer Bioprinting. Angew. Chemie 2015, 127 (13), 4029–4033. https://doi.org/10.1002/ange.201411383.
    (30) Bhatti, M.; McHugh, T. D.; Milanesi, L.; Tomas, S.Self-Assembled Nanoparticles as Multifunctional Drugs for Anti-Microbial Therapies. Chem. Commun. 2014, 50 (57), 7649–7651. https://doi.org/10.1039/c4cc00349g.
    (31) Bevilacqua, M. P.; Huang, D. J.; Wall, B. D.; Lane, S. J.; Edwards, C. K.; Hanson, J. A.; Benitez, D.; Solomkin, J. S.; Deming, T. J.Amino Acid Block Copolymers with Broad Antimicrobial Activity and Barrier Properties. Macromol. Biosci. 2017, 17 (10), 1600492. https://doi.org/10.1002/mabi.201600492.
    (32) Rodell, C. B.; Wade, R. J.; Purcell, B. P.; Dusaj, N. N.; Burdick, J. A.Selective Proteolytic Degradation of Guest-Host Assembled, Injectable Hyaluronic Acid Hydrogels. ACS Biomater. Sci. Eng. 2015, 1 (4), 277–286. https://doi.org/10.1021/ab5001673.
    (33) Mealy, J. E.; Rodell, C. B.; Burdick, J. A.Sustained Small Molecule Delivery from Injectable Hyaluronic Acid Hydrogels through Host-Guest Mediated Retention. J. Mater. Chem. B 2015, 3 (40), 8010–8019. https://doi.org/10.1039/c5tb00981b.
    (34) Rodell, C. B.; Rai, R.; Faubel, S.; Burdick, J. A.; Soranno, D. E.Local Immunotherapy via Delivery of Interleukin-10 and Transforming Growth Factor β Antagonist for Treatment of Chronic Kidney Disease. J. Control. Release 2015, 206, 131–139. https://doi.org/10.1016/j.jconrel.2015.03.025.
    (35) Thérien-Aubin, H.; Wang, Y.; Nothdurft, K.; Prince, E.; Cho, S.; Kumacheva, E.Temperature-Responsive Nanofibrillar Hydrogels for Cell Encapsulation. Biomacromolecules 2016, 17 (10), 3244–3251. https://doi.org/10.1021/acs.biomac.6b00979.
    (36) Lü, S.; Gao, C.; Xu, X.; Bai, X.; Duan, H.; Gao, N.; Feng, C.; Xiong, Y.; Liu, M.Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation. ACS Appl. Mater. Interfaces 2015, 7 (23), 13029–13037. https://doi.org/10.1021/acsami.5b03143.
    (37) Lu, Y. C.; Song, W.; An, D.; Kim, B. J.; Schwartz, R.; Wu, M.; Ma, M.Designing Compartmentalized Hydrogel Microparticles for Cell Encapsulation and Scalable 3D Cell Culture. J. Mater. Chem. B 2015, 3 (3), 353–360. https://doi.org/10.1039/c4tb01735h.
    (38) Cai, L.; Liu, S.; Guo, J.; Jia, Y. G.Polypeptide-Based Self-Healing Hydrogels: Design and Biomedical Applications. Acta Biomater. 2020, 113, 84–100. https://doi.org/10.1016/j.actbio.2020.07.001.
    (39) Yang, X.; Yu, H.; Wang, L.; Tong, R.; Akram, M.; Chen, Y.; Zhai, X.Self-Healing Polymer Materials Constructed by Macrocycle-Based Host-Guest Interactions. Soft Matter. Royal Society of Chemistry February 21, 2015, pp 1242–1252. https://doi.org/10.1039/c4sm02372b.
    (40) Liu, G.; Yuan, Q.; Hollett, G.; Zhao, W.; Kang, Y.; Wu, J.Cyclodextrin-Based Host-Guest Supramolecular Hydrogel and Its Application in Biomedical Fields. Polymer Chemistry. Royal Society of Chemistry July 7, 2018, pp 3436–3449. https://doi.org/10.1039/c8py00730f.
    (41) Jia, Y. G.; Jin, J.; Liu, S.; Ren, L.; Luo, J.; Zhu, X. X.Self-Healing Hydrogels of Low Molecular Weight Poly(Vinyl Alcohol) Assembled by Host-Guest Recognition. Biomacromolecules 2018, 19 (2), 626–632. https://doi.org/10.1021/acs.biomac.7b01707.
    (42) Li, G.; Wu, J.; Wang, B.; Yan, S.; Zhang, K.; Ding, J.; Yin, J.Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(l -Glutamic Acid). Biomacromolecules 2015, 16 (11), 3508–3518. https://doi.org/10.1021/acs.biomac.5b01287.
    (43) Li, C.; Faulkner-Jones, A.; Dun, A. R.; Jin, J.; Chen, P.; Xing, Y.; Yang, Z.; Li, Z.; Shu, W.; Liu, D.; Duncan, R. R.Rapid Formation of a Supramolecular Polypeptide-DNA Hydrogel for in Situ Three-Dimensional Multilayer Bioprinting. Angew. Chemie - Int. Ed. 2015, 54 (13), 3957–3961. https://doi.org/10.1002/anie.201411383.
    (44) Li, Q.; Liu, C.; Wen, J.; Wu, Y.; Shan, Y.; Liao, J.The Design, Mechanism and Biomedical Application of Self-Healing Hydrogels. Chinese Chem. Lett. 2017, 28 (9), 1857–1874. https://doi.org/10.1016/j.cclet.2017.05.007.
    (45) Chen, C.; Lan, J.; Li, Y.; Liang, D.; Ni, X.; Liu, Q.Secondary Structure-Governed Polypeptide Cross-Linked Polymeric Hydrogels. Chem. Mater. 2020, 32 (3), 1153–1161. https://doi.org/10.1021/acs.chemmater.9b04160.
    (46) Srivastava, S.; Andreev, M.; Levi, A. E.; Goldfeld, D. J.; Mao, J.; Heller, W. T.; Prabhu, V. M.; DePablo, J. J.; Tirrell, M.V.Gel Phase Formation in Dilute Triblock Copolyelectrolyte Complexes. Nat. Commun. 2017, 8 (1), 1–9. https://doi.org/10.1038/ncomms14131.
    (47) Papadakis, C.; Tsitsilianis, C.Responsive Hydrogels from Associative Block Copolymers: Physical Gelling through Polyion Complexation. Gels 2017, 3 (1), 3. https://doi.org/10.3390/gels3010003.
    (48) Sun, Y.; Wollenberg, A. L.; O’Shea, T. M.; Cui, Y.; Zhou, Z. H.; Sofroniew, M.V.; Deming, T. J.Conformation-Directed Formation of Self-Healing Diblock Copolypeptide Hydrogels via Polyion Complexation. J. Am. Chem. Soc. 2017, 139 (42), 15114–15121. https://doi.org/10.1021/jacs.7b08190.
    (49) Sun, Y.; Deming, T. J.Self-Healing Multiblock Copolypeptide Hydrogels via Polyion Complexation. ACS Macro Lett. 2019, 8, 553–557. https://doi.org/10.1021/acsmacrolett.9b00269.
    (50) Nandi, N.; Gayen, K.; Ghosh, S.; Bhunia, D.; Kirkham, S.; Sen, S. K.; Ghosh, S.; Hamley, I. W.; Banerjee, A.Amphiphilic Peptide-Based Supramolecular, Noncytotoxic, Stimuli-Responsive Hydrogels with Antibacterial Activity. Biomacromolecules 2017, 18 (11), 3621–3629. https://doi.org/10.1021/acs.biomac.7b01006.
    (51) Murphy, R.; Borase, T.; Payne, C.; O’Dwyer, J.; Cryan, S. A.; Heise, A.Hydrogels from Amphiphilic Star Block Copolypeptides. RSC Adv. 2016, 6 (28), 23370–23376. https://doi.org/10.1039/c6ra01190j.
    (52) Yeon, B.; Park, M. H.; Moon, H. J.; Kim, S. J.; Cheon, Y. W.; Jeong, B.3D Culture of Adipose-Tissue-Derived Stem Cells Mainly Leads to Chondrogenesis in Poly(Ethylene Glycol)-Poly(l-Alanine) Diblock Copolymer Thermogel. Biomacromolecules 2013, 14 (9), 3256–3266. https://doi.org/10.1021/bm400868j.
    (53) Hong, J. H.; Lee, H. J.; Jeong, B.Injectable Polypeptide Thermogel as a Tissue Engineering System for Hepatogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2017, 9 (13), 11568–11576. https://doi.org/10.1021/acsami.7b02488.
    (54) Zhang, Y.; Song, H.; Zhang, H.; Huang, P.; Liu, J.; Chu, L.; Liu, J.; Wang, W.; Cheng, Z.; Kong, D.Fine Tuning the Assembly and Gel Behaviors of PEGylated Polypeptide Conjugates by the Copolymerization of L-Alanine and γ-Benzyl-l-Glutamate N-Carboxyanhydrides. J. Polym. Sci. Part A Polym. Chem. 2017, 55 (9), 1512–1523. https://doi.org/10.1002/pola.28516.
    (55) Jeong, Y.; Joo, M. K.; Bahk, K. H.; Choi, Y. Y.; Kim, H. T.; Kim, W. K.; Jeong Lee, H.; Sohn, Y. S.; Jeong, B.Enzymatically Degradable Temperature-Sensitive Polypeptide as a New in-Situ Gelling Biomaterial. J. Control. Release 2009, 137 (1), 25–30. https://doi.org/10.1016/j.jconrel.2009.03.008.
    (56) Huang, J.; Hastings, C. L.; Duffy, G. P.; Kelly, H. M.; Raeburn, J.; Adams, D. J.; Heise, A.Supramolecular Hydrogels with Reverse Thermal Gelation Properties from (Oligo)Tyrosine Containing Block Copolymers. Biomacromolecules 2013, 14 (1), 200–206. https://doi.org/10.1021/bm301629f.
    (57) Zhang, S.; Alvarez, D. J.; Sofroniew, M.V.; Deming, T. J.Design and Synthesis of Nonionic Copolypeptide Hydrogels with Reversible Thermoresponsive and Tunable Physical Properties. Biomacromolecules 2015, 16 (4), 1331–1340. https://doi.org/10.1021/acs.biomac.5b00124.
    (58) Popescu, M. T.; Liontos, G.; Avgeropoulos, A.; Tsitsilianis, C.Stimuli Responsive Fibrous Hydrogels from Hierarchical Self-Assembly of a Triblock Copolypeptide. Soft Matter 2015, 11 (2), 331–342. https://doi.org/10.1039/c4sm02092h.
    (59) Popescu, M. T.; Liontos, G.; Avgeropoulos, A.; Voulgari, E.; Avgoustakis, K.; Tsitsilianis, C.Injectable Hydrogel: Amplifying the PH Sensitivity of a Triblock Copolypeptide by Conjugating the N-Termini via Dynamic Covalent Bonding. ACS Appl. Mater. Interfaces 2016, 8 (27), 17539–17548. https://doi.org/10.1021/acsami.6b03977.
    (60) Wan, Y.; Liu, L.; Yuan, S.; Sun, J.; Li, Z.PH-Responsive Peptide Supramolecular Hydrogels with Antibacterial Activity. Langmuir 2017, 33 (13), 3234–3240. https://doi.org/10.1021/acs.langmuir.6b03986.
    (61) Matsumoto, K.; Kawamura, A.; Miyata, T.Conformationally Regulated Molecular Binding and Release of Molecularly Imprinted Polypeptide Hydrogels That Undergo Helix-Coil Transition. Macromolecules 2017, 50 (5), 2136–2144. https://doi.org/10.1021/acs.macromol.6b02688.
    (62) Xu, Q.; He, C.; Ren, K.; Xiao, C.; Chen, X.Thermosensitive Polypeptide Hydrogels as a Platform for ROS-Triggered Cargo Release with Innate Cytoprotective Ability under Oxidative Stress. Adv. Healthc. Mater. 2016, 5 (15), 1979–1990. https://doi.org/10.1002/adhm.201600292.
    (63) Shi, F.; Ding, J.; Xiao, C.; Zhuang, X.; He, C.; Chen, L.; Chen, X.Intracellular Microenvironment Responsive PEGylated Polypeptide Nanogels with Ionizable Cores for Efficient Doxorubicin Loading and Triggered Release. J. Mater. Chem. 2012, 22 (28), 14168–14179. https://doi.org/10.1039/c2jm32033a.
    (64) Ma, Y.; Fu, X.; Shen, Y.; Fu, W.; Li, Z.Irreversible Low Critical Solution Temperature Behaviors of Thermal-Responsive OEGylated Poly(L-Cysteine) Containing Disulfide Bonds. Macromolecules 2014, 47 (14), 4684–4689. https://doi.org/10.1021/ma501104s.
    (65) Murphy, R. D.; In hetPanhuis, M.; Cryan, S. A.; Heise, A.Disulphide Crosslinked Star Block Copolypeptide Hydrogels: Influence of Block Sequence Order on Hydrogel Properties. Polym. Chem. 2018, 9 (28), 3908–3916. https://doi.org/10.1039/c8py00741a.
    (66) Joo, J. H.; Ko, D. Y.; Moon, H. J.; Shinde, U. P.; Park, M. H.; Jeong, B.Ion and Temperature Sensitive Polypeptide Block Copolymer. Biomacromolecules 2014, 15 (10), 3664–3670. https://doi.org/10.1021/bm500942p.
    (67) Basak, S.; Nanda, J.; Banerjee, A.Multi-Stimuli Responsive Self-Healing Metallo-Hydrogels: Tuning of the Gel Recovery Property. Chem. Commun. 2014, 50 (18), 2356–2359. https://doi.org/10.1039/c3cc48896a.
    (68) Roth-Konforti, M. E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L.UV Light–Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromol. Rapid Commun. 2018, 39 (24), 1800588. https://doi.org/10.1002/marc.201800588.
    (69) Murphy, R. D.; Kimmins, S.; Hibbitts, A. J.; Heise, A.3D-Extrusion Printing of Stable Constructs Composed of Photoresponsive Polypeptide Hydrogels. Polym. Chem. 2019, 10 (34), 4675–4682. https://doi.org/10.1039/c9py00796b.
    (70) Zhao, D.; Tang, Q.; Zhou, Q.; Peng, K.; Yang, H.; Zhang, X.A Photo-Degradable Injectable Self-Healing Hydrogel Based on Star Poly(Ethylene Glycol)-: B -Polypeptide as a Potential Pharmaceuticals Delivery Carrier. Soft Matter 2018, 14 (36), 7420–7428. https://doi.org/10.1039/c8sm01575a.
    (71) Lindsey, S.; Piatt, J. H.; Worthington, P.; Sönmez, C.; Satheye, S.; Schneider, J. P.; Pochan, D. J.; Langhans, S. A.Beta Hairpin Peptide Hydrogels as an Injectable Solid Vehicle for Neurotrophic Growth Factor Delivery. Biomacromolecules 2015, 16 (9), 2672–2683. https://doi.org/10.1021/acs.biomac.5b00541.
    (72) Cheng, L.; Cai, Z.; Ye, T.; Yu, X.; Chen, Z.; Yan, Y.; Qi, J.; Wang, L.; Liu, Z.; Cui, W.; Deng, L.Injectable Polypeptide-Protein Hydrogels for Promoting Infected Wound Healing. Adv. Funct. Mater. 2020, 30 (25), 2001196. https://doi.org/10.1002/adfm.202001196.
    (73) Buhleier, E.; Wehner, W.; Vögtle, F.“Cascade”- And “Nonskid-Chain-like” Syntheses of Molecular Cavity Topologies. Synth. 1978, 1978 (2), 155–158. https://doi.org/10.1055/s-1978-24702.
    (74) Newkome, G. R.; Yao, Z. Q.; Baker, G. R.; Gupta, V. K.Cascade Molecules: A New Approach to Micelles.1aA [27]-Arborol. Journal of Organic Chemistry. American Chemical Society 1985, pp 2003–2004. https://doi.org/10.1021/jo00211a052.
    (75) Grayson, S. M.; Fréchet, J. M. J.Convergent Dendrons and Dendrimers: From Synthesis to Applications. Chemical Reviews. American Chemical Society December 2001, pp 3819–3867. https://doi.org/10.1021/cr990116h.
    (76) Ooya, T.; Ogawa, T.; Takeuchi, T.Temperature-Induced Recovery of a Bioactive Enzyme Using Polyglycerol Dendrimers: Correlation between Bound Water and Protein Interaction. J. Biomater. Sci. Polym. Ed. 2018, 29 (6), 701–715. https://doi.org/10.1080/09205063.2018.1434988.
    (77) Bonduelle, C.Secondary Structures of Synthetic Polypeptide Polymers. Polym. Chem. 2018, 9 (13), 1517–1529. https://doi.org/10.1039/c7py01725a.
    (78) Svergun, D. I.; Koch, M. H. J.Small-Angle Scattering Studies of Biological Macromolecules in Solution. Reports Prog. Phys. 2003, 66 (10), 1735–1782. https://doi.org/10.1088/0034-4885/66/10/R05.
    (79) Barth, A.; Zscherp, C.What Vibrations Tell Us about Proteins. Q. Rev. Biophys. 2002, 35 (4), 369–430. https://doi.org/10.1017/S0033583502003815.
    (80) Takei, T.; Ikeda, K.; Ijima, H.; Kawakami, K.Fabrication of Poly(Vinyl Alcohol) Hydrogel Beads Crosslinked Using Sodium Sulfate for Microorganism Immobilization. Process Biochem. 2010, 46, 566–571. https://doi.org/10.1016/j.procbio.2010.10.011.
    (81) Das, A.Studies on Complex π-π and T-Stacking Features of Imidazole and Phenyl/p-Halophenyl Units in Series of 5-Amino-1-(Phenyl/p-Halophenyl)Imidazole-4-Carboxamides and Their Carbonitrile Derivatives: Role of Halogens in Tuning of Conformation. J. Mol. Struct. 2017, 1147, 520–540. https://doi.org/10.1016/j.molstruc.2017.06.124.

    下載圖示 校內:2024-07-26公開
    校外:2024-07-26公開
    QR CODE