簡易檢索 / 詳目顯示

研究生: 吳坤哲
Wu, Ken-Jer
論文名稱: 以固定化厭氧污泥與純菌株進行生物燃料之醱酵生產
Fermentative production of biofuels using immobilized anaerobic sludge and pure culture
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 192
中文關鍵詞: 水利停留時間混流反應器填充床反應器流體化床反應器2,3-丁二醇1,3-丙二醇厭氧污泥生物氫氣固定化細胞生物乙醇克雷伯氏桿菌
外文關鍵詞: Anaerobic sludge, 1,3-propanediol, 2,3-Butanediol, Packed-bed, Fluidized-bed, Hydraulic retention time, CSTR, Bioethanol, Biohydrogen, Klebsiella sp., Immobilized cell
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的是以固定化混菌和單一菌株Klebsiella sp.來生產一系列的生物燃料,包括氫氣、乙醇、1,3-丙二醇、2,3-丁二醇等。使用混菌配合固定化細胞製備之複合材料(CA + CH + TiO2)(藻酸鈣+幾丁聚醣+氧化鈦)在批次操作可得氫氣產速為21.3 mmol•l-1•h-1和氫氣產率為5.1 mol H2/mol substrate,由此結果得知使用該固定化細胞應可應用於連續式產氫操作。以(PMMA/collagen/activated carbon)(聚甲基丙烯酸甲酯/膠原蛋白/活性碳)細胞固定化進行批次與連續操作,展現出好的機械強度與產氫活性,可有效地進行高穩定性的連續操作於低有機負荷速率,並穩定與高效能的產生氫氣,於4至8小時的水利停留時間操作下,可得到最佳的氫氣產速為1.8 l h-1 l-1(為批次操作的七倍多),且在水利停留時間為6小時,可得到2.0 mol H2mol sucrose-1的氫氣產率。
    本研究並以以連續反應槽(CSTR)使用水利停留時間(HRT)的高低轉換來提升生物燃料氫氣和乙醇的產生效能,結果發現水利停留時間之增減對生物燃料的產出效能影響頗大,主要的原因是有機負荷速率與稀釋速率轉變時,微生物的菌相也產生變化,此一關鍵因素會影響微生物社會族群之功能與醱酵動力學。以葡萄糖為基質來進行水利停留時間連續轉換培養操作時,HRT操作轉高時,能量的產出量與效率均較高。
    在生物反應器組態的研究中發現,由於流體化床的質量傳送效率較填充床好,因而產生的氫氣產速和乙醇產速較高,且以蔗糖為基質時有較佳之效能。而於填充床進行反應,以葡萄糖當基質,可有效的產出乙醇產速378 mmol l-1 h-1和乙醇產率0.65mol EtOH/mol substrate,此乃不同的反應器型式,在不同的基質操作時,微生物的菌相結構產生變化所致。
    最後,本研究自厭氧污泥中篩選出產氫兼性菌種Klebsiella sp.,發現此菌株能同時產出氫氣、乙醇、1,3-丙二醇和2,3-丁二醇來當生物燃料與工業應用的生物化學品,並嘗試以批次醱酵方法提升該菌種之產氫與產醇效能。結果顯示,以甘油和蔗糖為基質,能有效的生產氫氣、乙醇、1,3-丙二醇和2,3-丁二醇。結果顯示,1,3-丙二醇產速為7.0 mmol l-1 h-1和1,3-丙二醇產率為0.37 mol 1,3-propanediol/mol glycerol與2,3-丁二醇產速為7.1 mmol l-1 h-1和2,3-丁二醇產率為0.59 mol 2,3-butanediol/mol sucrose。在生質能源工業應用上,當以低價位的生質柴油副產物甘油來進行厭氧醱酵生產,可得到高價位的生物化學品(如1,3-丙二醇和2,3-丁二醇),此進行途徑是可行性高且有未來前景的。

    In this dissertation, mixed and pure culture (i.e., Klebsiella sp. HE1) were immobilized to produce various biofuels, such as hydrogen, ethanol, 1,3-propanediol and 2,3-butanediol. A series of cell immobilization approaches were used to entrap mixed microflora for hydrogen production. We found that the cells immobilized with a composite matrix of AC + CH + TiO2 (Activated carbon + Chitosan + Titanium oxide) displayed a good H2 production rate of 21.3 mmol l-1 h-1and a hydrogen yield 5.1 mol H2/mol sucrose. The results from this work suggest the potential of using the immobilized-cell systems for continuous H2 production in practice. We also found that immobilized-cell system was suitable for batch and continuous H2 production giving a high stability and efficiency. The cells entrapped with novel composite polymeric matrix (PMMA/collagen/activated carbon) displayed good mechanical strength and H2-producing activity. Batch tests were conducted to explore favorable conditions for H2 production with the PMMA immobilized cells. Under optimal conditions, continuous H2 fermentation was conducted at a hydraulic retention time (HRT) of 4-8 h, giving the best H2-producing rate of 1.8 l h-1 l-1 (over 7 fold of the best batch result) at a HRT of 6 h and a H2 yield of 2.0 mol H2/mol sucrose. The outcome of this work suggests the potential of using this immobilized-cell system for continuous H2 production in practice.
    Using a continuously stirred tank bioreactor (CSTR), production of the two biofuels (hydrogen and ethanol) was dependent on the sugar substrate used and also varied with the HRT shifting operation. It is of great interest to observe that sequential HRT decreasing and increasing had significant impact on the biofuels producing performance. The HRT shifting operation appeared to influence the abundance and composition of bacterial population in the culture, and also governed the organic loading rate, which is normally a critical factor affecting the fermentation kinetics. In contrast, energy generation from glucose substrate seemed to be more efficient during a HRT-increasing process.
    For the feasible bioreactor systems for simultaneous production of H2 and ethanol as biofuels, fluidized bed reactors (FBR) were able to produce H2 and ethanol at a significant higher rate than packed bed reactors (PBR) due to better mass transfer efficiency in FBR. In PBR (packed bed bioreactor), glucose gave the best performance in terms of production rate and yield of the two biofuels, displayed a good EtOH production rate 378 mmol l-1 h-1and EtOH yield 0.65 mol EtOH /mol substrate. This difference in substrate preference could be due to variations in bacterial population structure resulting from different bioreactor configuration.
    Finally, a Klebsiella sp. HE1 strain isolated from sewage sludge, using an indigenous Klebsiella sp. HE1 strain for simultaneous production of H2, ethanol, 1,3-propanediol and 2,3-butanediol as biofuels or industrially applicable biochemical products. The H2-producing HE1 strain successfully isolated from aerobic and anaerobic sludge exhibitied the ability to produce hydrogen gas, 1,3-propanediol, 2,3-butanediol, ethanol from glycerol and sucrose substrate. This study shows the efficiency of producing 7.0 mmol l-1 h-1 of 1,3-propanediol with a yield of 0.37 mol 1,3-propanediol/mol glycerol and of producing 7.1 mmol l-1 h-1 of 2,3-butanediol with a yield of 0.59 mol 2,3-butanediol /mol sucrose. Using Klebsiella sp. to convert abundant and low-cost glycerol generated during the production of biodiesel into higher value products (1,3-propanediol or 2,3-butanediol etc.) represents a promising route to achieve economic viability in the biofuels industry.

    Contents Abstract (Chinese)…………………………………………………………………….…..…I Abstract (English)…………………………………………………………………….……III Acknowledgement…………………………………………………………………….........V Contents………………………………………………………………………………........VI List of tables…………………………………………………………………….................XI List of figures…………………………………………………………………...………...XV Chapter 1 Introduction……………………………………………………………………1 1.1 Overview of biofuels and fine biochemicals……………………………………...1 1.2 Motivation and purpose…………………………………………………………...2 1.3 Content of this dissertation………………………………………………………..3 Chapter 2 Literature review…………………………………………………………....…7 2.1 Overview of hydrogen, ethanol, 1,3-propanediol and 2,3-butanediol……………...7 2.2 Hydrogen production…………………………………………………….………..11 2.3 Ethanol production………..……………………………………………………....23 2.4 1,3-propanediol production…………………………………………………….....31 2.5 2,3-butanediol production…………………………………………………….......38 2.6 Immobilization of cells…………………………………………………………....43 2.6.1 Classification of immobilization methods……………………….…….....43 2.6.2 Immobilization of mixed microflora biofuels……………………………50 2.7 Fermentation technology for batch and continuous production…………………..53 Chapter 3 Materials and methods………………………………………………………55 3.1 Chemicals and materials…………………………………………………………55 3.1.1 Chemicals………………………………………………………………...55 3.1.2 Materials…………………………………………………………………58 3.2 Equipments………………………………………………………………………59 3.3 Flask experiments…………………………………………………………...…....62 3.3.1 Hydrogen-producing sludge and medium composition…..…………...…62 3.3.2 Isolation and identification of the bacterial strain used in Klebsiella sp. HE1…………………………………………………………………….63 3.3.3 Cultivation of Klebsiella sp. HE1………………………………………...63 3.4 Cell Immobilization matrices…………………………………………………....62 3.4.1 Immobilization of anaerobic sludge and composite matrices…………....65 3.4.2 Entrapment of anaerobic sludge with polymethyl methacrylate (PMMA) matrices………………………………………...........................66 3.4.3 Entrapment of anaerobic sludge with polyethylene-octene elastomer (POE) matrices…………………………………………………………...67 3.5 Data analysis…….. ……………………………………………………………...68 3.6 Dark-fermenation operation …………………………………………………….69 3.6.1 Batch operation…………………………………………………………..69 3.6.2 CSTR operation…………………………………………………………..70 3.6.3 Setup and operation of the fluidized bed reactor…………………………70 3.6.4 Setup and operation of the packed-bed bioreactor……………………….73 3.7 Analytical methods……………………………………………………………....75 3.7.1 Determination of cell concentration……………………………………….75 3.7.2 Determination of dry cell weight (DCW)………………………………....75 3.7.3 Measurement of VFA concentration……………………………………....75 3.7.4 Measurement of the gas products………………………………………….77 Chapter 4 Biohydrogen production using suspended and immobilized mixed microflora………………………………..........................................……...78 4.1 Typical profiles of H2 evolution and soluble metabolites production…………...79 4.2 Suspended cells under different metal salt of H2 producing performance…..…..81 4.3 Effect of cell immobilization approaches on H2 producing performance……….83 4.4 Summary ……………………………………………….….…….…….……..…85 Chapter 5 Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix………………………....88 5.1 Batch H2 production with PMMA-immobilized cells……………………….…..89 5.2 Continuous H2 production using PMMA-immobilized cells………………........90 5.3 Carbon substrate utilization and soluble metabolites production…………..........95 5.4 Novelty, significance, and limitation of the proposed immobilized-cell system..97 5.5 Summary ……………………………………………………………………....101 Chapter 6 Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures…………102 6.1 Selection of immobilized-cell systems suitable for continuous operation ....….104 6.2 Effect of sequential HRT shifting approaches on continuous H2 and ethanol production ………...….……………..……...……...……...……...…….……...107 6.3 Substrate utilization and soluble metabolite formation………………………...112 6.4 Energy production efficiency ………………………………………………….115 6.5 Summary ……………………………………………………………………....119 Chapter 7 Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge….120 7.1 H2 and ethanol production with fluidized bed bioreactor.………………….......122 7.2 H2 and ethanol production with packed bed bioreactor…………….….……....126 7.3 Composition of gaseous and soluble metabolites…………………………..….129 7.4 Energy production efficiency…………….. ….. …..……………………...…...134 7.5 Summary ………………………………………………………………….…...136 Chapter 8 Simultaneous production of 2,3-butanediol, ethanol and hydrogen with a Klebsiella sp. strain isolated from sewage sludge………………………….137 8.1 Typical soluble metabolites production by Klebsiella sp. HE1 from sucrose….138 8.2 Effect of pH and sucrose concentration on H2 production by Klebsiella sp. HE1……………………………………………………………………………...143 8.3 Effect of Fe2+ concentration on batch fermentation of Klebsiella sp. HE1….…..147 8.4 Overall energy production efficiency…... ……………………………………....149 8.5 Summary ……………………………………………………………………......151 Chapter 9 Fermentative production of biohydrogen, bioethanol and 1,3-propanediol from glycerol with Klebsiella sp. HE1 strain………………………………152 9.1 Isolation, identification and cultivation of the bacterial strain used in this study.153 9.2 Effect of pH and temperature on H2, ethanol and 1,3-propanediol production by Klebsiella sp.HE1.................................................................................................154 9.3 Effect of glycerol concentration on batch fermentation of Klebsiella sp. HE1……………………………………………………………………………...158 9.4 Typical soluble metabolites production by Klebsiella sp. HE1 from glycerol…..161 9.5 Overall Energy production efficiency…………………………………………...164 9.6 Summary ……………………………………………………………………......166 Chapter 10 Conclusions…………………………..……………………..…..…..….…..167 References………………………………………………………………………………..171 Appendix curriculum vitae……………………………………………………………….190 A.1 Curriculum vitae………………………………………………………………...190 A.2 Refereed journal paper………………………………………………………….190 A.3 Conference paper………………………………………………………………..191

    References

    Afschar, A.A., Vaz Rossel, C.E., Jonas, R., Chanto, A.Q., Schallar, K., 1993. Microbial production and downstream processing of 2, 3-butanediol. J. Biotechnol., 27, 317-329.
    Anthony, N.K., Alison, E.L., 2002. A mathematical model of a high sulphate wastewater anaerobic treatment system. Wat. Res., 36, 257-263.
    APHA, 1995. Standard methods for the examination of water and wastewater, American public health association, New York, U.S.A..
    Bagai, R., Madamwar, D., 1999. Long-term photo-evolution of hydrogen in a packed bed reactor containing a combination of Phormidium valderianum, Halobacterium halobium, and Escherichia coli immobilized in polyvinyl alcohol. Int. J. Hydrogen Energy, 24, 311-317.
    Bagai, R., Madamwar, D., 1998. Prolonged evolution of photohydrogen by intermittent supply of nitrogen using a combined system of Phormidium valderianum, Halobacterium halobium and Escherichia coli. Int. J. Hydrogen Energy, 23, 545-550.
    Basnakova, G., and Macaskie, L.E., 1997. Microbially enhanced chemisorption of nickel into biologically synthesized hydrogen uranyl phosphate: A novel system for the removal and recovery of metals from aqueous solutions, Biotechnol. Bioeng., 54, 319-327.
    Bayraktar, H., 2007. Theoretical investigation of flame propagation process in an SI engine running on gasoline–ethanol blends, Renewable Energy, 32, 758-771.
    BEN-Balanco Energetico Nacional, MME, Brasilia, 2004.
    Bickerstaff, G. F., 1997. Immobilization of enzymes and cells: some practical considerations. In Immobilization of Enzymes and Cells. Edited by G. F. Bickerstaff. Human Press Inc. New Jersey. p. 1-11.
    Biebl, H., 1991. Glycerol fermentation to 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use of a pH-auxostat. Appl. Microbiol. Biotechnol., 35, 701-705.
    Biebl, H., Marten, S., Hippe, H., Deckwer, W.D., 1992. Glycerol conversion to 1,3-propanediol by newly isolated clostridia. Appl. Microbiol. Biotechnol., 6, 592-597.
    Biebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D., 1998. Microbial production of 1,3-propanediol. Appl. Microbiol. Biotechnol., 52, 289-297.
    Biebl, H., Zeng, A.P., Menzel, K., Deckwer, W.D., 1998. Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl. Microbiol. Biotechnol., 50, 24-29.
    Biebl, H., 2001. Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J. Ind. Microbiol. Biotechnol., 27, 18-26.
    Bruinenberg, P.M., de Bot PHM, van Dijken J.P., Scheffers, W.A., 1984. NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol., 19, 256-260.
    Cao, N.G., Xia, Y.K., Gong, C.S., Tsao, G.T., 1997. Production of 2,3-butanediol from pretreated corn cob by Klebsilla oxytoca in the presence of fungal cellulose. Appl. Biochem. Biotechnol., 63, 129-139.
    Champluvier, B., Francart, B., Rouxhet, P.G., 1989. Co-immobilization by adhesion of β-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca; conversion of lactose into 2,3-BDL. Biotechnol. Bioeng., 34, 844-853.
    Chang, J.S., Lee, K.S., Lin, P.J., 2002. Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrogen Energy, 27, 1167-1174.
    Chang, Y.W., Lee, D. and Bae, S.Y., 2006. Preparation of polyethylene-octene elastomer/clay nanocomposite and microcellular foam processed in supercritical carbon dioxide. Polymer Int., 55, 184-189.
    Chen, C.C., Lin, C.Y. and Chang, J.S., 2001. Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl. Microbiol. Biotechnol., 57, 56-64.
    Chen, W.H., Chen, S.Y., Khanal, S.K., Sung, S., 2006. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy, 31, 2170-2178.
    Chen, W.M., Tseng, Z.J., Lee, K.S., and Chang, J.S., 2005. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy, 30, 1063-1070.
    Chen, X., Sun, Y., Xiu, Z.L., Li, X., Zhang, D., 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy, 31, 539-549.
    Colin, T., Bories, A., Moulin, G., 2000. Inhibition of Clostridium butyricun by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol., 54, 201-205.
    Das, D., Veziroglu, T.N., 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 26, 13-28.
    Deckwer, W.D., 1995. Microbial conversion of glycerol to 1,3-propanediol. FEMS Microbiol. Reviews, 16, 143-149.
    Demirbas, A., 2005. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progr. Energy Combust. Sci., 31, 17-35.
    Demirbas, A., 2007. Progress and recent trends in biofuels. Progr. Energy Combust. Sci., 33, 1-18.
    Department of Energy (DOE), 2001a. Properties of hydrogen. Available from:http://www.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fcm01r0.pdf.
    Department of Energy (DOE), 2001b. Chemical Name Search, Available from: http://webbook.nist.gov/ chemistry/name-ser.html.
    Desai, S.G., 2004. Cloning of the L-lactate dehydrogenase gene and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl. Microbiol. Biotechnol., 65, 600-605.
    Desvaux, M., Guedon, E., Petitdemange, H., 2001. Metabolic flex of cellulose batch and continuous cultures of Clostridium thermocellum in response to acidic environment. Microbiol., 147, 1461-1468.
    Dien, B.S., Nichols, N.N., O’Bryan, P.J., Bothast, R.J., 2000. Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol., 66, 181-196.
    Doremus, M.G., Linden, J.C., Moreira, A.R., 1985. Agitation and pressure effects on acetone-butanol fermentation. Biotechnol. Bioeng., 27, 852-860.
    Ela Ero glu, Inci Ero glu, Ufuk Gunduz, Lemi Turker, MeralYucel, 2006. Biological hydrogen production from olive millwastewater with two-stage processes. Int. J. Hydrogen Energy, 31, 1527-1535.
    El-Ziney M.G., Arneborg, N., Uyttendaele, M., Debevere, J., Jakobsen, M., 1998. Characterization of growth and metabolite production of Lactobacillusreuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol. Lett., 20, 913-916.
    Endo, G., Noike, T.and Matsumoto, J., 1982. Characteristics of cellulose and glucose decomposition in acidogenic phase of anaerobic digestion. Proc. Soc. Civ. Eng., 325, 61-68 (in Japanese).
    Fang, H.H.P., Liu, H., 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol., 8, 87-93.
    Fang, H.H.P., Zhang, T., Liu, H., 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbial. Biotechnol., 58, 112-119.
    Flickinger, M.C., 1980. Current biological research in conversion of cellulosic carbohydrates into liquid fuels: how far have we come? Biotechnol. Bioeng. 22, 27-48.
    Freeman, A., 1984. Gel entrapment of whole cells and enzymes in cross-linked, prepolymerized polyacrylamide hydrazide. Ann. N. Y. Acad. Sci., 434, 418-426.
    Freeman, A., Lilly, M.D., 1998. Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells. Rev. Enzyme Microb. Technol, 23, 335-345.
    Garg, S.K., Jain, A., 1995. Fermentative production of 2,3-butanediol: a review. Bioresour. Technol., 51, 103-109.
    Geoffrey, D.B., Barbara, L.K., Herbert, J.S., Nokes, S.E., 2005. Molecular and phase toxicity of compressed and supercritical fluids in biphasic continuous cultures of Clostridium thermocellum. Biotechnol. Bioeng., 89, 32-41.
    Gerbsch, N., Buchholz, R., 1995. New processes and actual trends in biotechnology. FEMS Microbiology Review, 16, 259-269.
    Grethlein, A.J., Jain, M.K., 1992. Bioprocessing of coal-derived synthesis gas by anaerobic bacteria. Focus Tibtech., 10, 418-423.
    Gryta, M., 2002. The assessment of microorganism growth in the membrane distillation system. Desalination, 142, 79-88.
    Gupta, B.S., Hashim, M.A., Ramachandran, K.B., Gupta, I.S., and Cui, Z.F., 2005. The effect of gas sparging in cross-flow microfiltration of 2,3-butanediol fermentation broth., 5, 54-57.
    Gutekunst, K., Hoffmann, D., Lommer, M., Egert, M., Suzuki, I., Schulz-Friedrich, R. And Appel, J., 2006. Metal Dependence and Intracellular Regulation of the Bidirectional NiFe-Hydrogenase in Synechocystis sp. PCC 6803. Int. J. Hydrogen Energy, 31, 1452-1459.
    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M. F., Liden, G., and Zacchi, G., 2006. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends in Biotechnology, 24, 12, 549-555.
    Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., 1994. An interlaboratory comparison of the performance of ethanol-producing microorganisms in a xylose-rich acid hydrolysate. Appl. Microbiol. Biotechnol. 41, 62-72.
    Harden, A., Walpole, G.S., 1906. 2,3-Butylene glycol fermentation by Aerobacter aerogenes. Proc. Royal. Soc. B77, 399-405.
    Hausinger, R.P., 1994. Nickel Enzymes in Microbes. Sci. Total. Environ., 148, 157-164.
    Hawkes, F.R., Dinsdale, R., Hawkes, D.L., Hussy, I., 2002. Sustainable fermentative hydrogen production: challenges for process optimization. Int. J. Hydrogen Energy, 27, 1339-1347.
    Hawkes, F.R., Hussy, I., Kyazze, G., Dinsdale, R., Hawkes, D.L., 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: Principles and progress. Int. J. Hydrogen Energy, 32, 172-84.
    Helen, G., Geoffrey, J.D., Grant, A.S., Neville, B.P., 2002. Evaluation of a recombinant Klebsiella Oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant Yeast and Zymomonas mobilis. J. Biotechnol., 96, 155-163.
    Homann, T., Tag, C., Biebl, H., Deckwer, W.D., and Schink, B., 1990. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl. Microbiol. Biotechnol., 33, 121-126.
    Huang, H., Gong, C.S., Tsao, G.T., 2002. Production of 1,3-propanediol by Klebsiella pneumoniae. Appl. Biochem. Biotechnol., 98, 687-698.
    Huang, J., Hooijmans, C.M., Briasco, C.A., Geraats, S.G.M., Luyben, K.C.A.M., Thomas, D., Barbotin, J.N., 1990. Effect of free-cell growth parameters on oxygen concentration profiles in gel immobilized recombinant Escherichia coli. Appl. Microbiol. Biotechnol., 33, 619-623.
    Ilgi Karapinar Kapdan, Fikret Kargi, 2006. Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, 38, 569-582.
    Islam, R., Cicek, N., Sparling, R., Levin, D.B., 2006. Effect of substrate loding on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Applied Microbiol. Biotechnol., 72, 576-584.
    Jansen, N.B., Flickinger, M.C., Tsao, G.T., 1984. Application of bioenergetics to modeling the microbial conversion of D-xylose to 2,3-butanediol. Biotechnol. Bioeng., 27, 573-582.
    Jin, Y.L., Speers, R.A., 1998. Flocculation of Saccharomyces cerevisiae. Food Res. Int., 31, 421-440.
    Juni, E., Heym, G.A., 1956. A cycle pathway for the bacterial dissimilation of 2,3-butanediol, acetyl methylcarbibol, and diacetyl I. General aspects of the 2,3-butanediol cycle. J. Bacteriol., 71, 425-432.
    Kargupta, K., Siddhartha, D., Sanyal, S.K., 1998. Analysis of the performance of a continuous membrane bioreactor with cell recycling during ethanol fermentation. Biochem. Eng. J., 1, 31-37.
    Kenji, M., Tetsuya, K., Kazuo, S., Kunio, O., 2005. Overexpression of a hydrogenase gene in Clostridium paraputrificum to enhance hydrogen gas production. FEMS Microbiol. Lett., 246, 229-235.
    Kierstan, M. P. J., Coughlan, M. P., 1991. Immobilization of proteins by noncovalent procedures: principles and applications. In Protein Immobilization: Fundamentals and Applications. Edited by R. F. Taylor. Marcel Dekker, Inc. New York. p. 13-71.
    Kolman, D.G. and Scully, J.R., 2000. An assessment of the crack tip potential of β-titanium alloys during hydrogen environmentally assisted crack propagation based on crack tip and passive surface electrochemical measurements. Corros. Sci., 42, 1863-1870.
    Kosaric, N. and Blaszczyk, R., 1990. Microbial aggregates in anaerobic wastewater treatment. Adv. Biochem. Eng. Biotechnol., 42, 27-34.
    Kotay, S. M., Das, D., 2008. Biohydrogen as a renewable energy resource-Prospects and potentials. Int. J. Hydrogen Energy, 33, 258-263.
    Kumar, N. and Das, D., 2001. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb. Technol., 29, 280-287.
    Lamed, R., Zeikus, G., 1980. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanerobium brockii. J. Bacteriol., 144, 569-575.
    Lamed, R.J., Lobos, J.H., Su, T.M., 1988. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl. Environ. Microbiol., 54, 1216-1221.
    Lebeau, T., Jouenne, T., Junter, G.A., 1997. Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb. Technol., 21, 265-272.
    Lebeau, T., Jouenne, T., Junter, G.A., 1998. Diffusion of sugars and alcohols through composite membrane structures immobilizing viable yeast cells. Enzyme Microb. Technol., 22, 434-438.
    Lee, J.W., Koo, B.W., Choi, J.W., Choi, D.H., Choi, I.G., 2008. Evaluation of waste mushroom logs as a potential biomass resource for the production of bioethanol. Bioresour. Technol., 99, 2736-2741.
    Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J. and Chang, J.S., 2003. H2 production with anaerobic sludge using activated-carbon supported packed-bed bioreactors. Biotechnol. Lett., 25, 133-138.
    Lee, K.S., Wu, J.F., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S., 2004. Anaerobic hydrogen production with an efficient carrier-induced granular sludge bed bioreactor. Biotechnol. Bioeng., 87, 648-657.
    Lee, K.S., Lo, Y.S., Lo, Y.C., Lin, P.J., Chang, J.S., 2004. Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme Microb. Technol., 35, 605-612.
    Lee, K.S., Lin, P.J. and Chang, J.S., 2006. Temperature effect on hydrogen fermentation in a granular sludge bed induced by activated carbon carrier, Int. J. Hydrogen Energy, 31, 465-474.
    Levin, D. B., Pitt, L. and M. Love, M., 2004. Biohydrogen production: prospects and limitations to practical application, Int. J. Hydrogen Energy, 29, 173-178.
    Levin, D.B., Islam, R., Cicek, N., Sparling, R., 2006. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy, 31, 1496-1503.
    Lim, J.W., Hassan, A., Rahmat, A.R., Wahit, M.U., 2006. Rubber-toughened polypropylene nanocomposite: effect of polyethylene octene copolymer on mechanical properties and phase morphology. J. Appl. Polymer Sci., 99, 3441-3450.
    Lin, C.Y., Chang, R.C., 1999. Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Technol. Biotechnol., 74, 498-500.
    Lin, C.Y. and Lay, C.H., 2005. A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora, Int. J. Hydrogen Energy, 30, 285-293.
    Lin, C.Y., Hung, C.H., Chen, C.H., Chung, W.T., Cheng, L.H., 2006. Effect of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Proc. Biochem., 41, 1383-1390.
    Lin, C.N., Wu, S.Y. and Chang, J.S., 2006. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. Int. J. Hydrogen Energy, 31, 2200-2210.
    Liu, D., Zeng, R.J., Angelidaki, I., 2006. Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Research, 40, 2230-2236.
    Liu, X., Ren, N., Song , F., Yang , C., Wang, A., 2008. Recent advances in fermentative biohydrogen production. Progress in Natural Science, 18, 253-258.
    Lo, Y.C., Bai, M.D., Chen, W.M., and Chang, J.S., 2008. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour. Technol., 99, 8299-8303.
    MacLean Heather L., Lave Lester B., 2003. Evaluating automobile fuel/propulsion system technologies, Prog. Energy Combus. Sci., 29, 1-69.
    Magee, R.J., Kosaric, N., 1987. The microbial production of 2,3-butanediol. Adv. Appl. Microbiol., 32, 89-161.
    Manish, S., Banerjee, R., 2008. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy, 33, 279-286.
    Marcelo Regattieri Sampaio, Luiz Pinguelli Rosa, Marcio de Almeida Dagosto, 2007. Ethanol-electric propulsion as a sustainable technological alternative for urban buses in Brazil. Renewable and Sustainable Energy Reviews, 11, 1514-1529.
    Martin, A.M., 1991. Bioconversion of waste materials to industrial products. Elsevier Applied Science, London, New York, pp. 63-116.
    Meinander, N.Q., Boels, I., Hahn-Hagerdalt B., 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol., 68, 79-87.
    Menzel, K., Ahrens, K., Zeng, A.P., Deckwer, W.D., 1998. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture. IV: Enzymes and fluxes of pyruvate metabolism. Biotechnol. Bioeng., 60, 617-626.
    Menzel, K., Zeng, A.P., Biebl, H., Deckwer, W.D., 1996. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: I. The phenomena and characterization of oscillation and hysteresis. Biotechnol. Bioeng., 52, 549-560.
    Menzel, K., Zeng, A.P., Deckwer, W.D., 1997. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J. Biotechnol., 56, 135-142.
    Mickelson, M.N. and Werkman, C.H., 1940. The sissimilation of glycerol by coli-aerogenes intermediates. J. Bacteriol., 39, 709-715.
    Nakashimada, Y., Rachman, M.A., Kakizono, T., Nishio, N., 2002. Hydrogen production of Enterobacter aaerogenes altered by extracellular and intracellular redox states. Int. J. Hydrogen Energy, 27, 1399-1405.
    Navratil, M., Domeny, Z., Hronsky, V., Sturdic, E., Smogrovicova, D., Gemeiner, P., 2000. Use of bioluminometry for determination of active yeast biomass immobilized in ionotropic hydrogels. Anal. Biochem., 284, 394-400.
    Norton, S., D’Amore, T., 1994. Physiological effects of yeast cell immobilization: applications for brewing. Enzyme Microb. Technol., 16, 365-375.
    Ogbonna, J.C., Matsumura, M., Kataoka, H., 1991. Effective oxygenation of immobilized cells through reduction in bead diameters: a review. Process Biochem., 26, 109-121.
    Oh, S.E., Bruce, E.L., 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 39, 4673-4681.
    Park, J.K., Chang, H.N., 2000. Microencapsulation of microbial cells. Biotechnol. Adv., 18, 303–319.
    Payot, S., Guedon, E., Cailliez, C., Gelhaye, E., Petitdemange, H., 1998. Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology Review, 144, 375-403.
    Rachman, M.A., Nakashimada, Y., Kakizono, T., Nishio, N., 1998. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Appl. Microbiol. Biotechnol. 49, 450-454.
    Ramon-Portugal, F., Silva, S., Taillandier, P., Strehaiano, P., 2003. Immobilized yeasts: actual oenologic utilizations. Wine Internet Technical Journal. (1), (www.vinidea.net).
    Reimann, A., Biebl, H., Deckwer, W.D., 1998. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl. Microbiol. Biotechnol., 49, 359-363.
    Rittmann, B.E. and McCarty, P.L., 2001. Environmental Biotechnology: Principle and Applications, New York: McGraw-Hill.
    Robert, A.A., 1983. Physical Chemistry, Sixth Edition, John Wiley &Sons.
    Rosenberg, S.L., 1980. Fermentation of pentose sugars to ethanol and other neutral productions by microorganisms. Enzyme Microb. Technol., 2, 185-193.
    Rumana, I., Nazim, C., Richard, S., David, L., 2006. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium Thermocellum 27405. Appi. Microbiol. Cell Physiol., 72, 576-582.
    Ruzicka, M., 1996. The effect of hydrogen on acidogenic glucose cleavage. Water Research, 30, 2447-2451.
    Shams, Y.S. and Gonzalez, R., 2007. Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry, Current Opinion in Biotechnology, 18, 213-219.
    Seshu Tummala, B., Stefan Junne, G., Carlos Paredes, J., Eleftherios Papoutsakis, T., 2003. Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol. Bioeng., 84, 842-854.
    Solomon, B.O., Zeng, A.P., Biebl, H., Ejiofor, A.O., Posten, C., Deckwer, W.D., 1994. Effects of substrate limitation on product distribution and H2/CO2 ratio in Klebsiella pneumoniae during anaerobic fermentation of glycerol. Appl. Microbiol. Biotechnol., 42, 222-226.
    Sparling, R., Islam, R., Cicek, N., Carere, C., Chow, H., Levin, D.B., 2006. Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Canadian J. Microbiol., 52, 681-688.
    Streekstra, H., Teixera de Mattos M.J., Neijssel, O.M., Tempest, D.W., 1987. Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat. Arch. Microbiol., 147, 268-275.
    Syu, M.J., 2001. Biological production of 2,3-butanediol. Appl. Microbiol. Biotechnol., 55, 10-18.
    Taillandier, P., Cazottes, M.L., Strehaiano, P., 1994. Deacidification of grape musts by Schizosaccharomyces entrapped in alginate beads: a continuous-fluidised-bed process. Chem. Eng. J. Bioch. Eng., 55, B29-B33.
    Takeshi, I., Nakashimada, Y., Senba, K., Matsui, T., and Nishio, N., 2005. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng., 100, 260-265.
    Tanaka, H., Irie, S., Ochi, H., 1989. A novel immobilization method for prevention of cell leakage from the gel matrix. J. Ferment.Bioeng., 68, 216-219.
    Tanisho, S., Kuromoto, M., Kadokura, N., 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy, 23, 559-563.
    Tao, Y., Chen, Y., Wu, Y., He, Y., Zhou, Z., 2007. High hydrogen yield from a two-step process of dark- and photo-fermentation of sucrose. Int. J. Hydrogen Energy, 32, 200-206.
    Ueno, Y., Otsuka, S., Morimoto, M., 1996. H2 production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng., 82, 194-197.
    Uffe, J., Tommy, D., Erik, S.K., 2005. Biomass energy in organic farming-the potential role of short rotation coppice. Biomass Bioenergy, 28, 237-244.
    US Department of Energy, 2001. Properties of Hydrogen. Available from http://www.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/fcm01r0.pdf .
    van Ginkel S.W., Bruce, L., 2005. Increased biological hydrogen production with reduced organic loading. Water Research, 39, 3819-3826.
    van Ginkel S., Sung, S., Lay, J.J., 2001. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol., 35, 4726-4730.
    van Ginkel S.W., Oh, S.E., Bruce E.L., 2005. Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrogen Energy, 30, 1535-1542.
    Vignais, P. M., Billoud, B., Meyer, J., 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev., 25, 455-501.
    Vitart, X., Duigou, A.L., Carles, P., 2006. Hydrogen production using the sulfur–iodine cycle coupled to a VHTR: An overview. Energy Convers. Manage., 47, 2740-2746.
    Wang, C.H., Lin, P.J., and Chang, J.S., 2006. Fermentative conversion of sucrose and pineapple waste into hydrogen gas in phosphate-buffered culture seeded with a municipal sewage sludge. Proc. Biochem., 41, 1353-1358.
    Wang, W., Sun, J., Hartlep, M., Deckwer, W.D., Zeng, A.P., 2003. Combined use proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol. Bioeng., 83, 525-536.
    Webb, C., Fukuda, H., Alkinson, B., 1986. The production of cellulose in a spouted bed fermentor using cells immobilized in biomass support particles. Biotechnol. Bioeng., 28, 41-50.
    Westermann, P., Jorgensen, B., Lange, L., Ahring, B.K., Christensen, C.H., 2007. Maximizing renewable hydrogen production from biomass in a bio/catalytic refinery, Int. J. Hydrogen Energy, 32, 4135-4141.
    Witt, U., MuEller, R.J., Widdecke, H., Deckwer, W.D., 1994. Syntheses, properties and biodegradability of polyesters based on 1,3-propanediol. Makromol. Chem. Phys., 195, 793-802.
    Wu, C.S., 2003. Improving polyethylene–octene elastomer/chitosan by graftation of acrylic acid onto polyethylene–octene elastomer—mechanical properties and biodegradability examination and composites characterization. J. Polymer Sci. Part A: Polymer Chem., 41, 3882-3891.
    Wu, J.F., 2006. Biohydrogen production using starch as the carbon substrate. Master’s Thesis Department of Chemical Engineering, National Cheng Kung University, Taiwan.
    Wu, K.J., Chang, J.S. and Chang, C.F., 2006. Biohydrogen production using suspended and immobilized mixed microflora. J. Chin. Inst. Chem. Engrs., 37, 545-550.
    Wu, K.J. and Chang, J.S., 2007a. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix. Proc. Biochem., 42, 279-284.
    Wu, K.J., Lo, Y.C., Chen, S.D. and Chang, J.S., 2007b. Fermentative production of biofuels with entrapped anaerobic sludge using sequential HRT shifting operation in continuous cultures. J. Chin. Inst. Chem. Engrs., 38, 205-213.
    Wu, K.J., Chang, C.F. and Chang, J.S., 2007c. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge. Proc. Biochem., 42, 1165-1171.
    Wu K.J., Ganesh D. Saratale, Lo Y.C., Chen W. M., Tseng Z.J., Chang M.C. and Tsai B.C., and Chang J.S., 2008. Fermentative production of 2,3-butanediol, ethanol and hydrogen with Klebsilla sp. HE1 isolated from sewage sludge. Bioresour. Technol., 99, 7966-7970.
    Wu, S.Y., Hung, C.H., Lin, C.N., Chen, H.W., Lee, A.S. and Chang, J.S., 2006. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol. Bioeng., 93, 934-946.
    Wu, S.Y., Lin, C.N., Chang, J.S., 2003. Hydrogen production with immobilized sewage sludge in three-phase fluidized beds. Biotechnol. Prog., 19, 828-832.
    Wu, S.Y., Lin, C.N., Chang, J.S., 2005. Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer. Int. J. Hydrogen Energy, 30, 1375-1381.
    Wu, S.Y., Lin, C.N., Lee, P.J., Chang, J.S., 2002. Microbial hydrogen production with immobilized anaerobic cultures. Biotechnol. Prog., 18, 921-926.
    Yokoi, H., Tokushige, T., Hirose, J., Hayashi, S., and Takasaki, Y., 1998. H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol. Lett., 20, 143-148.
    Yu, E.K., Saddler, J.N., 1983. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentration. Appl. Environ. Microbiol., 46, 630-635.
    Yu, E.K., Saddler, J.N., 1982. Power solvent production by Klebsiella pneumoniae grown on sugars presenting wood hemicellulose. Biotechnol. Lett. 4, 121-126.
    Yu, H.Q., Tay, J.H., and Fang, H.H.P., 2001. The roles of calcium in sludge granulation during UASB reactor start-up. Water Res., 35, 1052-1060.
    Yu, H.Q., Zhu, Z.H., Hu, W.R., Zhang, H.S., 2002. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy, 27, 1359-1365.
    Yvain, N., Christine, C., Fontecilla-Camps, J.C., 2002. Fe-only hydrogenases: structure, function and evolution. J. Inorg. Biochem., 91, 1-8.
    Zandvoort, M. H., van Hullebusch, E.D., Fermoso, F.G. and Lens, P.N.L., 2006. Trace metals in anaerobic granular sludge reactors: bioavailability and dosing strategies. Engineering in Life Sciences, 6, 293-301.
    Zeng, A.P., Menzel, K., and Deckwer, W.D., 1996. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: II. Analysis of metabolic rates and pathways under oscillation and steady-state conditions, Biotechnol. Bioeng., 52, 561-571.
    Zhang, M., Eddy, C., Daenda, K., Finkelstein, M., Picataggio, S.K., 1995. Metabolic engineering of a pentose pathway in ethanologenic Zymomonas moblis. Science, 267, 240-243.
    Zhu, H., Suzuki, T., Tsygankov, A.A., Asada, Y., Miyake, J., 1999. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels. Int. J. Hydrogen Energy, 24, 305-310.

    下載圖示 校內:2012-01-19公開
    校外:2012-01-19公開
    QR CODE