| 研究生: |
李璉昀 Li, Lian-Yun |
|---|---|
| 論文名稱: |
有限時域差分法的三角形網格的開發與六角形微奈米結構的共振模態分析 Triangular mesh for hexagonal nanostructures using Finite-Difference Time-Domain method |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 有限時域差分法 、六角形共振腔 、迴廊模態 、三角形格子點 、石墨烯 |
| 外文關鍵詞: | FDTD, haxegonal cavity, WGMs, triangular mesh, graphene |
| 相關次數: | 點閱:118 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
六角形共振腔依靠全反射可以將電磁波侷限在結構內,形成具有高品質因子的迴廊模態與準迴廊模態的共振。但是因為在模擬完整六角形共振腔的時候,我們很難去分辨同波長激發下兼併態的模態,因此我們根據共振模態的對稱性將結構與模擬空間切成四分之一,不僅可以由特殊的對稱性分開處理,並輕易地分辨同波長下的兼併態,還可以節省四分之一的模擬時間。之後我們又發現,在使用一般方形格子點模擬的時候,在六角形的斜邊會有stair case的情況產生,當模擬空間的解析度不夠的時候,會因為結構邊緣的平整度不好而造成模態無法有效的激發出來,為了解決stair case帶來的模擬誤差,我們特別的去開發正三角形的格子點,使得格子點的幾何結構能夠貼合材料本身的結構。三角形格子點的設置比正方形的網格相對複雜,本論將會有詳細的設置流程,當三角形格子點的設置經過模擬的測試沒問題後,我們就拿來模擬六角形氧化鋅晶柱以及六角形石墨烯薄片的結構。六角形氧化鋅晶柱可以視為一二維介電質的模擬,所以我們使用二維的三角形格子點成功的模擬5~12階的模態,並與迴廊模態的理論的計算進行比較。而六角形石墨稀薄片我們使用三維的三角形格子點來模擬各模態,在過去使用方形格子點時只能免強的看到第10階的模態左右,但是三角形格子點可以相對容易的模擬出10階以上的模態,這也代表成功的解決了stair case所造成的問題,不過在石墨烯的例子中Fabry-Perot mode卻因為stair case的解決變的更明顯,甚至有主導共振腔模態的現象。總結來說三角形格子點的開發與模擬結果是可以接受的,他成功的模擬出了六邊形結構共振腔的模態,也解決了stair case的問題,並利用對稱性分辨出同波長下的兼併態,也有效的節省的模擬時間,不過因為stair case被解決後衍生出來而外的問題就有待後續想其他的辦法解決。
The hexagonal cavity confines the electromagnetic field inside the structure by total reflection, and has high Q-factor caused by the whispering gallery modes or Quasi- whispering gallery modes. However, it is difficult to discriminate the degenerated modes with the same wavelength when the whole hexagonal structure is used in the simulation. Hence, according to the symmetry of the hexagonal cavity, only a quarter of the hexagonal cavity with x-y axis symmetry can be used. It can discriminate the degenerated modes and reduce the computational time. Another issue found in the simulation is that the “stair case” will appear on the edge of the quarter hexagonal structure when square mesh is used. The stair case will not correctly excitate the modes in low resolution. In order to fix the problem, a “triangular mesh” FDTD method is developed in this work. The triangular mesh is used to simulate the hexagonal cavity of ZnO rod and graphene flakes. ZnO rod is a dielectric 2D hexagonal structure. The first 5~12th modes of the ZnO hexagonal cavity are successfully simulated and compared with previous results using square meshes. The graphene flake’s hexagonal cavity modes are simulated using three dimensional triangular mesh. In Cartesian mesh, it is difficult to find the mode pattern with mode number higher than 10. The error caused by stair case can be easily solved in the triangular mesh.
[1] T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering Gallery Modes in Nanosized Dielectric Resonators with Hexagonal Cross Section," Physical review letters vol. 93, 103903 (2004)
[2] D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature (London) vol. 421, 925 (2003)
[3] M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski, and W. Langbein, "Light Trapped in a Photonic Dot: Microspheres Act as a Cavity for Quantum Dot Emission," Nano Letters vol. 1, 309 (2001)
[4] T. Nobis and M. Grundmann, "Low-order optical whispering-gallery modes in hexagonal nanocavities," Physical Review A vol. 72, 063806 (2005)
[5] G. P. Zhu, C. X. Xu, J. Zhu, C. G. Lv, and Y. P. Cui, "Two-photon excited whispering-gallery mode ultraviolet laser from an individual ZnO microneedle," Applied Physics Letters vol. 94, 051106 (2009)
[6] D. S. Yu, Y. J. Chen, B. J. Li, X. D. Chen, M. Q. Zhang, F. L. Zhao, and S. Ren, "Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates," Applied Physics Letters vol. 91, pp. 091116 (2007)
[7] H. Lohmeyer et al., "Resonant modes in monolithic nitride pillar microcavities," The European Physical Journal B vol. 48, 291 (2005)
[8] Y. Yamashita, M. Kuwabara, K. Torii, and H. Yoshida, "A 340-nm-band ultraviolet laser diode composed of GaN well layers," Optics Express vol. 21, 3133 (2013)
[9] H. Kudo, R. Suzuki, and T. Tanabe, "Whispering gallery modes in hexagonal microcavities," Physical Review A vol. 88, 023807 (2013)
[10] Q. Song, L. Ge, J. Wiersig, and H. Cao, "Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes," Physical Review A vol. 88, 023834 (2013)
[11] Q. Song, L. Ge, J. Wiersig, and H. Cao, "Formation of long-lived resonances in hexagonal cavities by strong coupling of superscar modes," Physical Review A vol. 88, 023834 (2013)
[12] L. M. Cureton, and J.R.Kuttler, "Eigenvalues of the laplacian on regular polygons and polygons resulting from their dissection," Journal of Sound and Vibration vol. 220(1), 83 (1990)
[13] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. on Antennas and Propagation AP-16, 302 (1966)
[14] A. K. Geimand K. S Novoselov, “The Rise of graphene,” Nature Materirals, 6,183(2007)
[15] S. Ishida , and Y. Anno, “Highly photosensitive graphene field-effect transistor with optical memory function,” Scientific Report 5, (2015)
[16] A.Vakil, “Transformation optics using graphene:one-atom-thick optical devices base on graphene,” Science 332, 1291, (2011)
[17] B. David and D. Pines, "A collective description of electron interactions. I. Magnetic interactions," Physical Review 82(5) ,625 (1951)
[18] D.Pines and B. David, "A collective description of electron interactions: II. Collective vs individual particle aspects of the interactions," Physical Review 85(2), 338 (1952)
[19] B. David and D. Pines, "A collective description of electron interactions: III. Coulomb interactions in a degenerate electron gas," Physical Review 92(3), 609 (1953)
[20] D.Pines, "A collective description of electron interactions: IV. Electron interaction in metals," Physical Review 92(3), 626 (1953)
[21] C. W. Cho, and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave and optical technology letters 7(13), 599 (1994)
[22] J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics 114, 185 (1994)
[23] S. Zachary, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition." IEEE transactions on Antennas and Propagation 43(12), 1460 (1995)
[24] K. Ziegler “Minimal conductivity of graphene: Non-universal values from the Kubo formula,” Phys. Rev. B 75, 233407 – Published 15 June (2007)
[25] R. P. Kelisky, and T. J. Rivlin, "A rational approximation to the logarithm," Math. Comp 22, 128 (1968)
[26] Taflove, IEEE trans. Antennas and propagation, 247 (1988)
[27] PONOMARENKO, L. A., et al “Chaotic Dirac billiard in graphene quantum dots,” Science 320(5874), 356 (2008)
[28] LE, L.T., et al. “Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide,” Electrochemistry Communications 139(4), 55 (2011)
[29] LI, Xiaolin, et al. “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” science 319(5867),1229 (2008)
[30] hemically derived, “ultrasmooth graphene nanoribbon semiconductors,” science 319(5867),1229 (2008)
[31] TANG, Z. K., et al. “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Applied Physics Letters 72(25),3270 (1998)