| 研究生: |
黃景暉 Huang, Ching-Hui |
|---|---|
| 論文名稱: |
鈦鉬合金滑動磨潤性質之研究 |
| 指導教授: |
陳瑾惠
Chern, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鈦合金 、磨耗 |
| 外文關鍵詞: | titanium alloy, wear |
| 相關次數: | 點閱:73 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
人體於長期荷重及相對運動下,對髖關節磨損情況會隨著年齡的增加而日益嚴重,當髖臼關節的損耗程度已經導致髖部疼痛、不良於行,或因關節性的病變(如osteoarthritis或osteonecrosis),導致髖關節無法正常運作,此時便需考慮人工髖關節的置換。在人工髖關節組件應用上,對於需承受高應力之骨骼,多選用金屬材料予以取代。需要能吸收衝擊、減少相對位移的軟骨組織,則以高分子聚合物替代。
本研究主要是針對本實驗室所研發低彈性模數的鈦合金(Ti-7.5Mo)及高強度鈦合金(Ti-7.5Mo-2Fe)與UHMWPE的磨耗性質作定性的研究與探討,並與Ti-13Nb-13Zr及商業用Ti-6Al-4V的磨耗性質相比較,期望能發展出除了保有鈦合金的基本優點外,耐磨性更佳並且安全不含毒性元素的新合金。
乾式與濕式磨耗實驗結果顯示:磨耗後Ti-13Nb-13Zr磨耗面的磨損最為嚴重,耐磨性最差。在乾式磨耗實驗中,愈容易在磨耗面產生PE轉移層的合金,其磨耗後表面的粗糙度會愈大,而對磨的PE磨耗量也會愈大。濕式磨耗實驗比乾式磨耗實驗更接近於人體髖關節環境的模擬,其結果顯示在濕式環境的模耗行為與合金的硬度有關係。硬度較小的Ti-13Nb-13Zr和Ti-7.5Mo所產生的PE磨耗量較大;而硬度較大的Ti-6Al-4V和Ti-7.5Mo-2Fe產生的PE磨耗量較小。所以單從磨耗行為來看,硬度較大的Ti-7.5Mo-2Fe及Ti-6Al-4V會較適合作為髖關節的植入材。
none
[1] 韋文誠、鄭誠功、關永武,陶瓷人工髖關節球頭之發展與評估,科學發展月刊,第二十七卷,第九期,pp.998-1007.
[2] J.A. Davidson, A.K. Mishra, P. Kovacs and R.A. Poggie, “New surface hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty”, Bio-Medical Materials and Engineering, 4(3): 231-243, 1994.
[3] W.F. Ho, “Structure and properties of cast Ti-Mo alloys”, Dissertation for Philosophy, Department of Materials Science and Engineering National Cheng-Kung University, Tainan, Taiwan, R.O.C., 1999.
[4] Y. Okazaki, S. Rao, T. Tateishi, Y. Ito, “Cytocompatibility of various metal and development of new titanium alloys for medical implants”, Materials Science and Engineering, A243: 250-256, 1998.
[5] S. Rao, T. Ushida, T. Tateishi, Y. Okazaki and S. Asao, “Effect of Ti, Al and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells”, Bio-Medical Materials and Engineering, 6: 79-86, 1996.
[6] A.K. Mishra, J.A. Davidson, R.A. Poggie, P. Kovacs and T.J. Fitzgerald, “Mechanical and tribological properties and biocompatibility of diffusion hardened Ti13Nb13Zr- a new titanium alloy for surgical implants”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 96-113, 1996.
[7] L.D. Zardiackas, D.W. Mitchell and J.A. Disegi, “Characterization of Ti-15Mo beta titanium alloy for orthopaedic implant applications”, edited by S.A. Brown and J.E. Lemons, Medical Applications of Titanium and Its Alloys: The Material and Biological Issues, ASTM STP 1272, West Conshohocken, PA: ASTM, pp. 60-75, 1996.
[8] R.M. Pilliar, “Modern metal processing for improved load-bearing surgical implants”, Biomaterials, 12: 95-100, 1991.
[9] J.O. Galante, J. Lemons, M. Spector and P.D. Wilson, “The biologic effects of implant materials”, Journal of Orthopaedic Research, 9: 760-775, 1991.
[10] J. Livermore, “Effect of femoral head size on wear of the polyethylene acetabular component”, The Journal of Bone and Joint Surgery, vol. 72-A, No. 4, April, 1990.
[11] V. Premnath, W.H. Harris, M. Jasty and E.W. Merrill, “Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem”, Biomaterial, 17: 1741-1753, 1996.
[12] B.A. Mckellop and T.V. Röstlund, “The wear behavior of ion-implanted Ti-6Al-4V against UHMWPE”, Journal of Biomedical Materials Research, 24: 1413-1425, 1990.
[13] F. Torregrosa, L. Barrallier and L. Roux, “Phase analysis, microhardness and tribological behavior of Ti-6Al-4V after ion implantation of nitrogen in connection with its application for hip-joint prosthesis”, Thin Solid Films, 266: 245-253, 1995.
[14] F. Alonso, T.J. Ugarte, D. Sansom, J.L. Viviente and J.I. Onate, “Effects of ion implantation on Ti-6Al-4V on its frictional behavior against UHMWPE”, Surface and Coatings Technology, 83: 301-306, 1996.
[15] 傅宇輝“骨科原理及應用” 國立編譯館,第一版,第二十七章,1989.
[16] J.B. Park, “Biomaterials science and engineering”, Introduction ,Chap.1, Plenum press, pp. 1, 1984.
[17] J.B. Park, “Biomaterials science and engineering”, Introduction, Chap.1, Plenum press, pp. 4, 1984.
[18] A. Montague, K. Merritt, S. Brown, and J. Payer, “Effects of Ca and H2O2 added to Rpmi on the fretting corrosion of Ti6Al4V”, Journal of Biomedical Materials Research, 32: 519-526, 1996.
[19] J.A. Davidson, “Characteristics of metal and ceramic total hip bearing surface and the effect on long-term UHMWPE wear”, Orthopaedic Research Report OR-92-08, Smith and Nephew, 1991.
[20] S.S. Seymour, “Plastics materials and processes”, Van Nostrand Reinhold, New York, pp. 74-77, 1982.
[21] S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp. 474, 1994.
[22] S.L. Evans and P.J. Gregson, “Composite technology in load-bearing orthopaedic implants”, Biomaterials, 19: 1329-1342, 1998.
[23] Y. Fu and A.W. Batchelor, “Fretting wear behavior of thermal sprayed hydroxyapatite coating lubricated with bovine albumin”, Wear, 230: 98-102, 1999.
[24] M. Rψkkum, M. Brandt, K. Bye, K.R. Hetland, S. Waage and A. Reigstad, “Polyethylene wear, osteolysis and acetabular loosening with an HA-coated hip prosthesis”, The Journal of Bone and Joint Surgery, 81B: 582-589, 1999.
[25] D.P. Dowling, P.V. Kola and K. Donnelly, “Evaluation of diamond-like carbon-coated orthopaedic implants”, 6: 390-393, 1997.
[26] M.T. Raimondi and R. Pietrabissa, “The in-vivo wear performance of prosthetic femoral heads with titanium nitride coating”, Biomaterials, 21: 907-913, 2000.
[27] J. Matthew and Jr. Donachie, “Titanium a technical guide”, ASM International, Metals Park, OH 44073, USA, 1988.
[28] J.L. Murray, “Binary alloy phase diagrams”, Vol. 3, edited by massalski TB, J.L. Murray, L.H. Bennett and H. Baker, American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
[29] P.J. Bania, “Beta titanium alloys and their role in the titanium industry”, edited by D. Eylon, R. Boyer and D. Koss, Beta Titanium Alloys in the 1990’s, TMS, Warrendale, PA, pp. 3-14, 1993.
[30] R.M. Hall and A. Unsworth, “Review-Friction in hip prostheses”, Biomaterials, 18: 1017-1026, 1997.
[31] R.J.A. Bigsby, D.D. Auger, Z.M. Jin, D. Dowson, C.S. Hardaker and J. Fisher, “A comparative tribological study of wear of composite cushion cups in a physiological hip joint simulator”, Journal of Biomechanics, 31: 363-369, 1998.
[32] S.J. Hall, “Basic Biomechanics”, The McGraw-Hill Companies, Inc., Chap. 4, 1995.
[33] W.H. Harris, “Osteolysis and particle disease in hip replacement-A review”, Acta orthopaedica Scandinavica, 65: 113-123, 1994.
[34] S. Santavirta, “Biocompatibility of polyethylene and host response to loosening of cementless total hip replacement”, Clinical Orthopaedics and Related research, 297: 100-110, 1993.
[35] H.A. McKellop, P. Campbell and S.H. Park, “The origin of submicron polyethylene wear debris in total hip arthroplasty”, Clinical Orthopaedics and Related Research, 311: 3-20, 1995.
[36] H.G. Willert and H. Bertram, “Osteolysis in alloarthroplasty of the hip-The role of ultra-high molecular weight polyethylene wear particles”, Clinical Orthopaedics and Related Research, No. 258, Sep, 1990.
[37] M.T. Manley and P. Serekian, “Wear debris-An environmental issue in total joint replacement”, Clinical Orthopaedics and Related Research, 298: 137-146, 1994.
[38] M.J. Griffith, M.K. Seidenstein, D. Williams and J. Charnley, “Eight year results of Charnley arthroplasties of the hip with special reference to the behavior of cement”, Clinical Orthopaedics and Related Research, 137: 24-36, 1978.
[39] J.K. Weaver, “Activity expectations and limitations following total joint replacement”, Clinical Orthopaedics and Related Research, 137: 55-61, 1978.
[40] C.H. Lohmann and Z. Schwartz, ”Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition”, 21: 551-561, 2000.
[41] M. Baleani, L. Cristofolini and M. Viceconti, “Endurance testing of hip prostheses: a comparison between the load fixed in ISO 7206 standard and the physiological loads”, Clinical Biomechanics, 14: 339-345, 1999.
[42] S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp.466-467, 1994.
[43] J.E. Nevelos, E. Ingham, C. Doyle, J. Fisher and A.B. Nevelos, “Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses”, Biomaterials, 20: 1833-1840, 1999.
[44] S.R. Simon, “Orthopaedic basic science”, American Academy of Orthopaedic Surgeons, pp. 464-466, 1994.
[45] A. Wang, A. Essner, C. Stark and J.H. Dumbleton, “Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions”, Biomaterials, Vol. 17, No. 9, 1996.
[46] V.D. Good, I.C. Clarke and L. Anissian, “Water and bovine serum lubrication compared in simulator PTFE/CoCr wear model”, Journal of Biomedical Materials Research, 33: 275-283, 1996.
[47] J.P. Van Loon, G.J. Verkerke, L.G. M. de Bont and R.S.B. Liem, “Wear-testing of a temporomandibular joint prosthesis: UHMWPE and PTFE against a metal ball, in water and in serum”, Biomaterials, 20: 1471-1478, 1999.
[48] V. Chanddrasekaran, W.L. Sauer, A.M. Tayor and D.W. Hoeppner, “Evaluation of fretting corrosion behavior of the proximal pad taper of a modular hip design”, Wear, 231: 54-64, 1999.
[49] M.J. Paooas, G. Makris and F.F. Buechel, “Titanium nitride ceramic film against polyethylene”, Clinical Orthopaedics and Related Research, 317: 64-70, 1995.
[50] V.O. Saikko, P.O. Paavolainen and P. Slatis, “Wear of the polyethylene acetabular cup-Metallic and ceramic heads compared in a hip simulator”, Acta Orthopaedica Scandinavica, 64: 391-402, 1993.
[51] F. Brossa, A. Cigada, S. Fare, R. Chiesa and L. Paracchini, “Tribological behavior of Ti-6Al-4V modified by surface treatments”, Journal of Materials Science: Material in Medicine, 7: 471-474, 1996.
[52] B. Derbyshire, J. Fisher, D. Dowson, C.S. Hardaker and K. Brummitt, “Wear of UHMWPE sliding against untreated, titanium nitride-coated and ‘Hardcor’-treated stainless steel counterfaces”, Wear, pp. 258-262, 1995.
[53] R.A. Poggie, J.J. Wert, A.K. Mishra and J.A. Davidson, “Friction and wear characterization of UHMWPE in reciprocating sliding contact with Co-Cr, Ti-6Al-4V, and zirconia implant bearing surfaces”, Wear and Friction of Elastomers, ASTM STP 1145, Robert Denton and M.K. Keshavan, Eds., American Society for Testing and Materials, Philadelphia, 1992.
[54] R.A. Buchanan, E.D. Rigney and J.M. Williams, “Wear accelerated corrosion of Ti-6Al-4V and nitrogen ion implanted Ti-6Al-4V mechanisms and influence of fixed stress magnitude”, Journal of Biomedical Materials Research, 21: 367-377, 1987.
[55] H. Hong and W.O. Winer, “A fundamental tribological study of Ti/Al2O3 contact in sliding wear”, Journal of Tribology, 111: 504-509, 1989.
[56] V. Saikko, “Wear and friction properties of prosthetic joint materials evaluated on a reciprocating pin-on-flat apparatus”, Wear, 166:169-178, 1993.
[57] C. Allen, A. Bloycet and T. Bellt, “Sliding wear behavior of ion implanted ultra high molecular weight polyethylene against a surface modified titanium alloy Ti-6Al-4V”, Tribology International, 29(6): 527-534, 1996.
[58] H. Schmidt, A. Schminke and D.M. Rück, “Tribological behavior of ion-implanted Ti6Al4V sliding against polymers”, Wear, 209: 49-56, 1997.
[59] F. Platon, P. Fournier and S. Rouxel, “Tribological behavior of DLC coatings compared to different materials used in hip joint prostheses”, Wear, 250: 227-236, 2001.
[60] X.Y. Li, H. Dong and W. Shi, “New insight into wear Ti6Al4V by ultra-high molecular weight polyethylene under water lubricated conditions”, Wear, 250: 553-560, 2001.