簡易檢索 / 詳目顯示

研究生: 曾博彥
Tseng, Po-Yen
論文名稱: 紊流奈米流體於三維肋條-凹槽渠道之數值模擬與最佳化
Numerical simulation and optimization of turbulent nanofluids in a three-dimensional rib-grooved channel
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 124
中文關鍵詞: 紊流奈米流體肋條-凹槽渠道單相模型兩相模型基因演算法最佳化
外文關鍵詞: Turbulent, Nanofluids, Rib-grooved channel, Single-phase model, Two-phase model, Genetic algorithm, Optimization
相關次數: 點閱:122下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文以單相與兩相模型模擬奈米流體於等壁溫三維矩形/弧形肋條-凹槽渠道紊流強制對流之數值計算。應用控制體積法求解紊流強制對流奈米流體穩態、耦合三維統御橢圓偏微分方程式。採用標準 紊流模型求解紊流方程式。先以紊流奈米流體於平滑渠道之模擬結果與參考文獻數據作驗證,最大誤差在2%內,再進一步研究矩形/弧形肋條-凹槽渠道。矩形/弧形肋條-凹槽數值計算的研究參數範圍包括雷諾數 (5000 ≤ Re ≤ 20000)、體積濃度(2% ≤ ϕ ≤ 4%)、矩形肋條-凹槽高度(0.1875 ≤ e/H ≤ 0.5625)、矩形肋條-凹槽寬度(0.325 ≤ b/H ≤ 0.775)、矩形肋條-凹槽間距(0.25 ≤ p/H ≤ 0.75)。弧形肋條-凹槽高度(0.0825 ≤ r1/H ≤ 0.1875)、弧形肋條-凹槽寬度(0.04125 ≤ r2/H ≤ 0.09375)、弧形肋條-凹槽間距 (0.25 ≤ p/H ≤ 0.75)。
      文中提供矩形/弧形肋條-凹槽幾何尺寸和奈米流體體積濃度參數間互相影響與平均紐賽數之比較。數值結果顯示加入矩形及弧形肋條-凹槽渠道的平均紐賽數優於平滑渠道。平均紐賽數在較小的肋條-凹槽高度、特定的肋條-凹槽間距時有較好增幅。除此之外,單相模型與兩相模型計算結果顯示在模擬流場與對流熱傳特性有些許不同。
      此外本文利用反應曲面法(RSM)、基因演算法(GA)得到目標函數定義為熱性能係數E (Thermal Performance Factor)與四種設計參數,肋條-凹槽高度、肋條-凹槽寬度、肋條-凹槽間距、體積濃度之間關係式,並得到不同雷諾數下最佳矩形/弧形肋條-凹槽幾何外型。其中發現目標函數E在雷諾數(Re = 10000)時有較好的表現,矩形肋條-凹槽渠道有18.2%而弧形肋條凹槽渠道有42.1%的增益。

    In this study, numerical simulations by single and two-phase models of nanofluids turbulent forced convection in a three-dimensional rectangular/arc rib-grooved channel with constant wall temperature are investigated. The elliptical, coupled, steady-state, three-dimensional governing partial differential equations for turbulent forced convection of nanofluids are solved numerically using the finite volume approach. The standard turbulence model is applied to solve the turbulent equations. Numerical simulations of turbulent nanofluids in a smooth channel are first validated with available results in the literature, the maximum discrepancy within 2%, and rectangular/arc rib-grooved channels are further studied. Numerical computations are performed with rectangular/arc rib-grooved channel for the parameters studied include Reynolds number (5000 ≤ Re ≤ 20000), volume concentration (2% ≤ ϕ ≤ 4%), rectangular rib-grooved height ratios (0.1875 ≤ e/H ≤ 0.5625), rectangular rib-grooved width ratios (0.325 ≤ b/H ≤ 0.775), rectangular rib-grooved pitch ratios (0.25 ≤ p/H ≤ 0.75), arc rib-grooved height ratios (0.0825 ≤ r1/H ≤ 0.1875), arc rib-grooved width ratios (0.04125 ≤ r2/H ≤ 0.09375) and the rib-grooved pitch ratios (0.25 ≤ p/H ≤ 0.75).
     The interactive influences of rib-groove geometrical ratios and nanofluid volume concentration on the average Nusselt number are provided in this study. The numerical results show that average Nusselt number within rectangular/arc rib-grooved channels are enhanced compared to the smooth channel. The average Nusselt number of rib-grooved channel is found to improve better with smaller rib-grooved height ratios, and some ratios of rib-grooved pitch. Furthermore, the numerical results of the single and two-phase models show that it have some differences in simulated the flow filed and turbulent convective heat transfer characteristics.
    In addition, the optimization of this problem is also presented by using response surface methodology (RSM) and genetic algorithm (GA) method. The objective function E is defined as thermal performance factor has developed a correlation function with four design parameters, rib-groove height ratios, rib-groove width ratios, rib-groove pitch, and the volume concentration. According to the optimal results, optimum rib-grooved geometrical conditions were obtained at four different Reynolds numbers.
    It is found that the objective function E is better at Re = 10000, rectangular rib-grooved have 18.2% and arc rib-grooved have 42.1% enhancement.

    目錄 中文摘要 I 英文摘要 III 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 符號說明 XXI 第一章 緒論 1   1-1前言 1   1-2文獻回顧 2   1-3本文探討之主題及方法 7 第二章 理論分析 11   2-1奈米流體理論分析 11    2-1-1等效密度、等效比熱 11    2-1-2黏滯係數、熱傳導係數 11   2-2混合模型 12    2-2-1混合模型連續方程式 12    2-2-2混合模型動量方程式 13    2-2-3濃度方程式 15    2-2-4相對速度 15   2-3紊流模式 16   2-4空間流場解析 18    2-4-1單相模型(single-phase model)基本統御方程式 18    2-4-2兩相模型(two-phase model)基本統御方程式 19   2-5邊界條件 21   2-6數據計算 23    2-6-1雷諾數(Reynold number) 23    2-6-2平均紐賽數(Average Nusselt number) 23 2-6-3熱性能係數(Thermal Performance Factor) 24 第三章 數值方法 25   3-1概述 25   3-2統御方程式的座標轉換 26   3-3格點位置的配置 29   3-4統御方程式的離散 30   3-5壓力修正方程式 33   3-6差分方程式的解法 36   3-7收斂條件 36 第四章 最佳化設計 39   4-1概述 39   4-2反應曲面法 40   4-3迴歸分析 41   4-4基因演算法 43    4-4-1適應度 44    4-4-2基因演散法算子 45    4-4-3終止條件 49 第五章 結果與討論 55   5-1網格獨立測試與奈米流體模型測試 56   5-2流場特性分析 59    5-2-1速度向量 59    5-2-2壓降 61   5-3溫度場特性分析 63   5-4反應曲面法與基因演算法之最佳化 67 第六章 結論與建議 117   6-1結論 117   6-2建議 119 參考文獻 121  表目錄 表4-1 反應曲面法實驗設計結構表 51 表4-2 輪盤選擇 52 表4-3 交配演算子之例子 52 表4-4 突變演算子之例子 52 表5-1三氧化二鋁之物理性質 79 表5-2水之物理性質 79 表5-3入口速度(m/s) 與雷諾數、奈米粒子體積濃度對照表 79 表5-4 反應曲面法在矩形肋條-凹槽渠道之計算結果(Re= 5000) 80 表5-5 反應曲面法在矩形肋條-凹槽渠道之計算結果(Re=10000) 81 表5-6 反應曲面法在矩形肋條-凹槽渠道之計算結果(Re=15000) 82 表5-7 反應曲面法在矩形肋條-凹槽渠道之計算結果(Re=20000) 83 表5-8 反應曲面法在弧形肋條-凹槽渠道之計算結果(Re=5000) 84 表5-9反應曲面法在弧形肋條-凹槽渠道之計算結果(Re=10000) 85 表5-10 反應曲面法在弧形肋條-凹槽渠道之計算結果(Re=15000) 86 表5-11 反應曲面法在弧形肋條-凹槽渠道之計算結果(Re=20000) 87 表5-12反應曲面法在矩形肋條-凹槽渠道之最佳化設計 88 表5-13 反應曲面法在弧形肋條-凹槽渠道之最佳化設計 88 圖目錄 圖1-1三維矩形肋條-凹槽渠道示意圖 9 圖1-2二維矩形肋條-凹槽渠道尺寸示意圖 9 圖1-3三維弧形肋條-凹槽渠道示意圖 10 圖1-4二維弧形肋條-凹槽渠道尺寸示意圖 10 圖3-1 座標轉換 (a)物理空間 (b)計算空間 38 圖3-2 交錯網格示意圖 38 圖4-1最佳化設計流程圖 53 圖4-2基因演算法流程圖 54 圖5-1矩形肋條-凹槽渠道網格分布圖(Mesh= 380×75×15) 89 圖5-2弧形肋條-凹槽渠道網格分布圖(Mesh= 1100×55×15) 90 圖5-3奈米流體於平滑渠道速度驗證圖 91 圖5-4奈米流體於平滑渠道平均對流熱傳係數驗證圖 91 圖5-5矩形肋條-凹槽渠道網格獨立測試圖 (h/H= 0.5625, b/H= 0.325, p/H= 0.75, ϕ= 4%) 92 圖5-6弧形肋條-凹槽渠道網格獨立測試圖 (r1/H= 0.1875, r2/H= 0.04125, p/H= 0.75, ϕ= 4%) 92 圖5-7矩形肋條-凹槽渠道奈米流體模型測試圖 (h/H= 0.5625, b/H= 0.325, p/H= 0.75, ϕ= 4%) 93 圖5-8弧形肋條-凹槽渠道奈米流體模型測試圖 (r1/H= 0.1875, r2/H= 0.04125, p/H= 0.75, ϕ= 4%) 93 圖5-9矩形肋條-凹槽渠道最佳組速度向量分布圖 (e/H= 0.1875, b/H= 0.325, p/H= 0.75, ϕ= 4%) (a) Re= 5000 (b) Re= 10000 (c) Re= 15000 (d) Re= 20000 94 圖5-10矩形肋條-凹槽渠道最佳組局部(首兩肋條間)速度向量分布圖 (e/H= 0.1875, b/H= 0.325, p/H= 0.75, ϕ= 4%, Re= 20000) 95 圖5-11弧形肋條-凹槽渠道最佳組速度向量分布圖 (r1/H= 0.083, r2/H= 0.094, p/H= 0.25, ϕ= 4%, Re= 20000) (a)Re= 5000 (b)Re= 10000 (c)Re= 15000 (d)Re= 20000 96 圖5-12弧形肋條-凹槽渠道最佳組局部(首兩肋條間)速度向量分布圖 (r1/H= 0.083, r2/H= 0.094, p/H= 0.25, ϕ= 4%, Re= 20000) 97 圖5-13矩形肋條-凹槽渠道最佳組局部速度向量分布圖,離加熱版 1/100H處 (e/H= 0.1875, b/H= 0.325, p/H= 0.75, ϕ= 4%, Re= 20000) 98 圖5-14弧形肋條-凹槽渠道最佳組局部速度向量分布圖,離加熱版 1/100H處 (r1/H= 0.083, r2/H= 0.094, p/H= 0.25, ϕ= 4%, Re= 20000) 98 圖5-15平滑渠道不同濃度ϕ下壓降與雷諾數關係圖 99   圖5-16矩形肋條-凹槽渠道不同肋條-凹槽高度e/H下 壓降與雷諾數關係圖(b/H= 0.325, p/H= 0.75, ϕ= 4%) 99 圖5-17矩形肋條-凹槽渠道不同肋條-凹槽寬度b/H下 壓降與雷諾數關係圖(e/H= 0.1875, p/H= 0.75, ϕ= 4%) 100 圖5-18矩形肋條-凹槽渠道不同肋條-凹槽間距p/H下 壓降與雷諾數關係圖(e/H= 0.1875, b/H= 0.325, ϕ= 4%) 100 圖5-19弧形肋條-凹槽渠道不同肋條-凹槽高度r1/H下 壓降與雷諾數關係圖(r2/H= 0.09375, p/H= 0.25, ϕ= 4%) 101 圖5-20弧形肋條-凹槽渠道不同肋條-凹槽半寬度r2/H下 壓降與雷諾數關係圖(r1/H= 0.0825, p/H= 0.25, ϕ= 4%) 101 圖5-21弧形肋條-凹槽渠道不同肋條-凹槽間距p/H下 壓降與雷諾數關係圖(r1/H= 0.0825, r2/H= 0.09375, ϕ= 4%) 102 圖5-22平滑渠道不同濃度ϕ下紐賽數與雷諾數關係圖 102 圖5-23矩形肋條-凹槽渠道不同肋條-凹槽高度e/H下平均紐賽數 與雷諾數關係圖(b/H= 0.325, p/H= 0.75, ϕ= 4%) 103 圖5-24矩形肋條-凹槽渠道不同肋條-凹槽寬度b/H下平均紐賽數 與雷諾數關係圖(e/H= 0.1875, p/H= 0.75, ϕ= 4%) 103 圖5-25矩形肋條-凹槽渠道不同肋條-凹槽間距p/H下平均紐賽數 與雷諾數關係圖(e/H= 0.1875, b/H= 0.325, ϕ= 4%) 104 圖5-26不同e/H加熱區表層溫度分布圖 (b/H= 0.325, p/H= 0.75, ϕ= 0.04, Re= 20000) (a)e/H= 0.1875 (b) e/H= 0.375 (c) e/H= 0.5625 105 圖5-27不同b/H加熱區表層溫度分布圖 (e/H= 0.1875, p/H= 0.75, ϕ= 0.04, Re= 20000) (a) b/H= 0.325 (b) b/H= 0.55 (c) b/H= 0.775 106 圖5-28不同p/H加熱區表層溫度分布圖 (e/H= 0.1875, b/H= 0.325, ϕ= 0.04, Re= 20000) (a) p/H= 0.25 (b) p/H= 0.5 (c) p/H= 0.75 107 圖5-29弧形肋條-凹槽渠道不同肋條-凹槽高度r1/H下平均紐賽數 與雷諾數關係圖(r2/H= 0.09375, p/H= 0.25, ϕ= 4%) 108 圖5-30弧形肋條-凹槽渠道不同肋條-凹槽半寬度r2/H下平均紐賽數 與雷諾數關係圖(r1/H= 0.0825, p/H= 0.25, ϕ= 4%) 108 圖5-31弧形肋條-凹槽渠道不同肋條-凹槽間距p/H下平均紐賽數 與雷諾數關係圖(r1/H= 0.0825, r2/H= 0.09375, ϕ= 4%) 109 圖5-32不同高度r1/H下加熱區表層溫度分布圖 (r2/H= 0.09375, p/H= 0.25, ϕ= 4%, Re= 20000) (a) r1/H= 0.0825, (b) r1/H= 0.135, (c) r1/H= 0.1875 110 圖5-33不同半寬度r2/H下加熱區表層溫度分布圖 (r1/H= 0.0825, p/H= 0.25, ϕ= 4%, Re= 20000) (a) r2/H= 0.04125, (b) r2/H= 0.0675, (c) r2/H= 0.09375 111 圖5-34不同間距p/H下加熱區表層溫度分布圖 (r1/H= 0.0825, r2/H= 0.09375, ϕ= 4%, Re= 20000) (a) p/H= 0.25(b) p/H= 0.5, (c) p/H= 0.75 112 圖5-35平滑渠道不同濃度ϕ下熱性能係數與雷諾數關係圖 113 圖5-36矩形肋條-凹槽渠道不同肋條-凹槽高度e/H下熱性能係數 與雷諾數關係圖(b/H= 0.325, b/H= 0.325, ϕ= 4%) 113 圖5-37矩形肋條-凹槽渠道不同肋條-凹槽寬度b/H下熱性能係數 與雷諾數關係圖(e/H= 0.1875, p/H= 0.75, ϕ= 4%) 114 圖5-38矩形肋條-凹槽渠道不同肋條-凹槽間距p/H下熱性能係數 與雷諾數關係圖(e/H= 0.1875, b/H= 0.325, ϕ= 4%) 114 圖5-39 弧形肋條-凹槽渠道不同肋條-凹槽高度r1/H下熱性能係數 與雷諾數關係圖(r2/H=0.09375, p/H=0.25, ϕ= 4%) 115 圖5-40弧形肋條-凹槽渠道不同肋條-凹槽半寬度r2/H下熱性能係數 與雷諾數關係圖(r1/H=0.0825, p/H=0.25, ϕ= 4%) 115 圖5-41弧形肋條-凹槽渠道不同肋條-凹槽間距p/H下熱性能係數 與雷諾數關係圖(r1/H=0.0825,r2/H=0.09375,ϕ= 4%) 116

    參考文獻

    [1] V. Bianco, S. Nardini, and O. Manca, Enhancement of Heat Transfer and Entropy Generation Analysis of Nanofluids Turbulent Convection Flow in Square Section Tubes, Nanoscale research letters, vol. 6, no. 1, pp. 1-12, 2011.
    [2] J. C. Han, L. R. Glicksman, and W. M. Rohsenow, An Investigation of Heat Transfer and Friction for Rib-Roughened Surfaces, International Journal of Heat and Mass Transfer, vol. 21, no. 8, pp. 1143-1156, 1978.
    [3] T. M. Liou, and J. J. Hwang, Turbulent Heat Transfer Augmentation and Friction in Periodic Fully Developed Channel Flows, Journal of heat transfer, vol. 114, no. 1, pp. 56-64, 1992.
    [4] A. S. SundÉn, Bengt, Numerical Simulation of Turbulent Convective Heat Transfer in Square Ribbed Ducts, Numerical Heat Transfer: Part A: Applications, vol. 38, no. 1, pp. 67-88, 2000.
    [5] C. Herman, and E. Kang, Comparative Evaluation of Three Heat Transfer Enhancement Strategies in a Grooved Channel, Heat and Mass Transfer, vol. 37, no. 6, pp. 563-575, 2001.
    [6] A. Ooi, G. Iaccarino, P. A. Durbin et al., Reynolds Averaged Simulation of Flow and Heat Transfer in Ribbed Ducts, International Journal of Heat and Fluid Flow, vol. 23, no. 6, pp. 750-757, 2002.
    [7] S. Eiamsa-ard, and P. Promvonge, Numerical Study on Heat Transfer of Turbulent Channel Flow over Periodic Grooves, International Communications in Heat and Mass Transfer, vol. 35, no. 7, pp. 844-852, 2008.
    [8] S. Eiamsa-Ard, and P. Promvonge, Thermal Characteristics of Turbulent Rib-Grooved Channel Flows, International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 705-711, 2009.
    [9] G. Xie, S. Zheng, W. Zhang et al., A Numerical Study of Flow Structure and Heat Transfer in a Square Channel with Ribs Combined Downstream Half-Size or Same-Size Ribs, Applied Thermal Engineering, vol. 61, no. 2, pp. 289-300, 2013.
    [10] S. Chol, Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.
    [11] J. Eastman, U. Choi, S. Li et al., Enhanced Thermal Conductivity through the Development of Nanofluids. p. 3.
    [12] S. Lee, S.-S. Choi, S. Li, and et al., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Journal of Heat Transfer, vol. 121, no. 2, pp. 280-289, 1999.
    [13] D. Wen, and Y. Ding, Experimental Investigation into Convective Heat Transfer of Nanofluids at the Entrance Region under Laminar Flow Conditions, International journal of heat and mass transfer, vol. 47, no. 24, pp. 5181-5188, 2004.
    [14] S. K. Das, S. U. Choi, and H. E. Patel, Heat Transfer in Nanofluids—a Review, Heat transfer engineering, vol. 27, no. 10, pp. 3-19, 2006.
    [15] J. Wang, M. Wang, and Z. Li, A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer, International journal of thermal sciences, vol. 46, no. 3, pp. 228-234, 2007.
    [16] W. Yu, D. M. France, J. L. Routbort et al., Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering, vol. 29, no. 5, pp. 432-460, 2008.
    [17] S. Murshed, K. Leong, and C. Yang, Investigations of Thermal Conductivity and Viscosity of Nanofluids, International Journal of Thermal Sciences, vol. 47, no. 5, pp. 560-568, 2008.
    [18] S. Özerinç, S. Kakaç, and A. G. Yazıcıoğlu, Enhanced Thermal Conductivity of Nanofluids: A State-of-the-Art Review, Microfluidics and Nanofluidics, vol. 8, no. 2, pp. 145-170, 2010.
    [19] C. Nguyen, F. Desgranges, G. Roy et al., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids–Hysteresis Phenomenon, International Journal of Heat and Fluid Flow, vol. 28, no. 6, pp. 1492-1506, 2007.
    [20] B. C. Pak, and Y. I. Cho, Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles, Experimental Heat Transfer an International Journal, vol. 11, no. 2, pp. 151-170, 1998.
    [21] Maxwell, Electrictiy and Magnetism, 1 ed., Oxford, England: Clarendon Press, 1873.
    [22] P. Keblinski, S. Phillpot, S. Choi et al., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), International journal of heat and mass transfer, vol. 45, no. 4, pp. 855-863, 2002.
    [23] J. Buongiorno, Convective Transport in Nanofluids, Journal of Heat Transfer, vol. 128, no. 3, pp. 240-250, 2006.
    [24] S. E. B. Maı̈ga, C. T. Nguyen, N. Galanis et al., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube, Superlattices and Microstructures, vol. 35, no. 3, pp. 543-557, 2004.
    [25] S. E. B. Maiga, S. J. Palm, C. T. Nguyen et al., Heat Transfer Enhancement by Using Nanofluids in Forced Convection Flows, International Journal of Heat and Fluid Flow, vol. 26, no. 4, pp. 530-546, 2005.
    [26] A. K. Santra, S. Sen, and N. Chakraborty, Study of Heat Transfer Due to Laminar Flow of Copper–Water Nanofluid through Two Isothermally Heated Parallel Plates, International Journal of Thermal Sciences, vol. 48, no. 2, pp. 391-400, 2009.
    [27] H. Mohammed, P. Gunnasegaran, and N. Shuaib, Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids, International Communications in Heat and Mass Transfer, vol. 37, no. 10, pp. 1496-1503, 2010.
    [28] R. Lotfi, Y. Saboohi, and A. Rashidi, Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches, International Communications in Heat and Mass Transfer, vol. 37, no. 1, pp. 74-78, 2010.
    [29] M. Akbari, N. Galanis, and A. Behzadmehr, Comparative Analysis of Single and Two-Phase Models for Cfd Studies of Nanofluid Heat Transfer, International Journal of Thermal Sciences, vol. 50, no. 8, pp. 1343-1354, 2011.
    [30] M. K. Moraveji, and R. M. Ardehali, CFD Modeling (Comparing Single and Two-Phase Approaches) on Thermal Performance of Al2O3/Water Nanofluid in Mini-Channel Heat Sink, International Communications in Heat and Mass Transfer, vol. 44, pp. 157-164, 2013.
    [31] H. Mohammed, A. Al-Shamani, and J. Sheriff, Thermal and Hydraulic Characteristics of Turbulent Nanofluids Flow in a Rib–Groove Channel, International Communications in Heat and Mass Transfer, vol. 39, no. 10, pp. 1584-1594, 2012.
    [32] W. Peng, B. Minli, L. Jizu et al., Comparison of Multidimensional Simulation Models for Nanofluids Flow Characteristics, Numerical Heat Transfer, Part B: Fundamentals, vol. 63, no. 1, pp. 62-83, 2013.
    [33] M. Ishii, Thermo-Fluid Dynamic Theory of Two-Phase Flow, NASA STI/Recon Technical Report A, vol. 75, pp. 29657, 1975.
    [34] M. Manninen, V. Taivassalo, and S. Kallio, On the Mixture Model for Multiphase Flow, 1996.
    [35] L. Schiller, Naumann, A.,, A Drag Coefficient Correlation, Z. Ver. Deutsch. Ing., vol. 77, pp. 318-320, 1935.
    [36] A. Miller, and D. Gidaspow, Dense, Vertical Gas‐Solid Flow in a Pipe, AIChE journal, vol. 38, no. 11, pp. 1801-1815, 1992.
    [37] B. E. Launder, and D. Spalding, The Numerical Computation of Turbulent Flows, Computer methods in applied mechanics and engineering, vol. 3, no. 2, pp. 269-289, 1974.
    [38] S. Patankar, Numerical Heat Transfer and Fluid Flow: CRC Press, 1980.
    [39] G. E. Box, and K. Wilson, On the Experimental Attainment of Optimum Conditions, Journal of the Royal Statistical Society. Series B (Methodological), vol. 13, no. 1, pp. 1-45, 1951.
    [40] K. A. De Jong, An Analysis of the Behavior of a Class of Genetic Adapive Systems, University of Michigan, 1975.
    [41] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, 1989.
    [42] D. L.D., Handbook of Genetic Alogorithms: Van Nostrand Reinhold, 1991.
    [43] J. R. Koza, Genetic Programming, on the Programming of Computers by Means of Natural Selection, MIT press, 1992.

    下載圖示 校內:2017-07-24公開
    校外:2017-07-24公開
    QR CODE