| 研究生: |
趙李益 Chao, Lee-Yi |
|---|---|
| 論文名稱: |
氧化釔的添加對Sr2FeMoO6導電機構的影響 Effect of Y2O3 dopant on the electrical conduction mechanism of Sr2FeMoO6 |
| 指導教授: |
方滄澤
Fang, Tsang-Tse |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 常磁阻 、磁阻 、亞鐵磁性 、鐵磁性 、反鐵磁性 、穿遂磁阻 、超巨磁阻 、異向性磁阻 、反磁性 、超交換交互作用 、雙蓋鈦礦結構 、順磁性 、半金屬性 、自旋閥 |
| 外文關鍵詞: | ordinary magnetoresistance, half-metallic nature, tunneling magnetoresistance, colossal magnetoresistance, anisotropy magnetoresistance, superexchange interaction, Sr2FeMoO6, antiferromagnetism, ferromagnetism, ferrimagnetism, Paramagnetism, diamagnetism, spin valve |
| 相關次數: | 點閱:137 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從前人與我們團隊的研究中,對於 Sr2FeMoO6 形成固溶體的成因、材料合成的機構以及反應動力學有深入的研究且獲得許多寶貴的研究成果,對於 Sr2FeMoO6 的合成方法已有找出穩定的合成製程條件。本實驗則以前人研究的經驗,探討釔摻雜於 Sr2FeMoO6 中,研究Sr2-xYxFeMoO6 系統。
實驗是以 SrCO3、MoO3、Fe2O3、Y2O3 四種初始原料,利用固態反應製程方法製備實驗樣本。首先,必須確認Sr2-xYxFeMoO6 系統,釔的固固溶程度;由 XRD 實驗結果,我們將釔的添加量設定在 x = 0.002。其次,為了強調 Fe-Mo 有序排列程度的差異,進行兩組對照組,即燒結體在兩種不同時間進行熱處理,分別為無長時間熱處理與有長時間熱處理,藉此比較兩者之間的差異。最後,對於系統 Sr2-xYxFeMoO6 之物理性質分析,則由X光繞射圖譜計算 Fe-Mo有序排列程度以及格子常數;依據Monte Carlo simulation study分析結果來計算飽和磁化量以及居里溫度點,並且利用四點探針量測方法探討此系統之導電行為。
由實驗結果分析,Sr2-xYxFeMoO6 系統,隨釔的添加其結構以及物理性質之關係如下:
1.Fe-Mo有序排列程度是隨釔添加量的增加而減少。
2.正方結構Sr2-xYxFeMoO6之單位晶胞體積是隨釔添加量的增加而減少。
3.飽和磁化量與居里溫度是隨釔添加量的增加而減少。
4.電阻率與溫度之變化曲線為半導體性之導電行為,電阻率是隨釔添加量的增加而提高。
5.電子能態密度是隨釔添加量的增加而提高。
Sr2FeMoO6, a ferromagnetic material with magnetic transition temperature above 400 K, has been classified as magnetoresistive materials. It has a double perovskite structure and is half-metallic in nature. Here we report structural and electronic properties of Sr2-xYxFeMoO6 series of compounds in which Sr+2 is substituted with Y+3 over the range 0≦x≦0.02. Samples of all the compositions were sure to be of single phase, ascertaining the solid solubility of yttrium into the system over the entire range explored.
A series of substituted SFMO compounds, Sr2-xYxFeMoO6 with x=0.000~0.020, were synthesized via the solid-state route. Stoichiometric amounts of SrCO3, Fe2O3, MoO3, and Y2O3, for each of the compositions, were mixed by mechanical milling. The homogeneously mixed powders were calcined firstly in air at 1000 ℃ for 3h and calcined secondly in reducing atmosphere, 5%H295%N2, at 1125℃ for 3h. Powders after calcining were then ground to fine powders and these powders were pressed into pellets and furthermore a final sintering of these pellets were carried out under the reducing atmosphere, 1%H299%N2, at 1350 ℃ for 4h. In order to emphasize the difference of degree of Fe-Mo ordering, we make our system into two classifications: one is subjected to the heat treatment under the reducing atmosphere, 1%H299%N2, at 1125℃ for 24h and not to do this heat treatment for the other. We utilized the X-ray diffractometer to make sure that each of the compositions were a single phase and then calculated the lattice parameters and Fe-Mo ordering which can be used to obtain the curie temperature and saturated magnetization according to Monte Carlo simulation study. For electronic properties, we used the four-probe method and did curve fitting via the term:
In this study, the experimental results of Sr2-xYxFeMoO6 as following:
1.As the increase of the amounts of yttrium, the degree of Fe-Mo order decrease.
2.The unit cell volume of the tetragonal Sr2-xYxFeMoO6 drops, as the increase of the amounts of yttrium.
3.The saturated magnetization and curie temperature decrease, as the amounts of yttrium increase
4.From the temperature dependence of resistance, the conduction behavior is semiconductor, and as the amounts of yttrium increase, the resistivity goes up.
5.As the increase of the amounts of yttrium, the density of electronic states increases.
[1] Soshin Chikazumi 著,張煦、李學養 譯,"磁性物理學",聯經出版社,(1982)。
[2] Charles Kittel, "Introduction to Solid State Physics" 7th ed., John Wiley & Sons. Inc., Chap. 14, 15 (1996).
[3] P. Langevin, Ann. Chem. Phys. 5, 70 (1905).
[4] P. Drude, Ann. Der hysik, 1, 566 (1900).
[5] P. Drude, Ann. Der hysik, 1,369 (1900).
[6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen va Dau, F. Petroff, P. Etienne, G. Greuzet, A. Friederich, and J. Chaxeles, Phys. Rev. Lett. 61, 2472 (1988).
[7] "中華民國磁性技術協會",會訊第16期,(1999)。
[8] S. Jin, T. H. Tiefel, M. McCormak, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science, 264, 413 (1994).
[9] G.A. Prinz, Science 282, 1660 (1998); S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001); S.A. Chambers, and Y.K. Yoo, MRS Bull. 28, 706 (2003).
[10] R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).
[11] P.A. Dowben, and R. Skomski, J. Appl. Phys. 95, 7453 (2004).
[12] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).
[13] A.W. Sleight,, and J.F. Weiher, J. Phys. Chem. Solids 33,679 (1972).
[14] J.B. Goodenough,, and R.I. Dass, Int. J. Inorg. Mater. 2, 3 (2000).
[15] D.D. Sarma, P. Mahadevan, T. Saha-Dasgupta, S. Ray, and A. Kumar, Phys. Rev. Lett. 85, 2549 (2000).
[16] Z. Fang, K. Terakura, and J. Kanamori, Phys. Rev. B 63, 180407 (2001).
[17] H. Wu, Phys. Rev. B 64, 125126 (2001).
[18] Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, and H. Winter, Phys. Rev. B 68, 104411 (2003).
[19] E. Rautama, N. Hamada, H. Yamauchi, and M. Karppinen, unpublished.
[20] J. Linden, T. Yamamoto, M. Karppinen, H. Yamauchi, and T. Pietari, Appl. Phys. Lett. 76, 2925 (2000).
[21] M. Karppinen, H. Yamauchi, Y. Yasukawa, J. Linden, T.S. Chan, R.S. Liu, and J.M. Chen, Chem. Mater. 15, 4118 (2003).
[22] J.P. Crocombette, M. Pollak, F. Jollet, N. Thromat, and M. Gautier-Soyer, Phys. Rev. B 52, 3143 (1995).
[23] M. Gautier-Soyer, J. Eur. Cer. Soc. 18, 2253 (1998).
[24] T. Nakamura, K. Kunihara, and Y. Hirose, Mater. Res. Bull. 16, 321 (1981).
[25] J. E. Evetts, M. G. Blamire, N. D. Mathur, S. P. Isaac, B. S. Teo, L. F. Cohen, and J. L. MacManus-Driscoll, Phil. Trans. R. Soc. A 356, 1593 (1998).
[26] M. Ziese, Rep. Prog. Phys. 65 (2), 151 (2002).
[27] T. Kise, T. Ogasawara, M. Ashida, Y. Tomioka, Y. Tokura, and M. Kuwata-Gonokami, Phy. Rev. Lett. 85, 9, 1986 (2000).
[28] J. B. MacChesney, R. C. Sherwood, and J. F. Petter, J. Chem. Phys. 43, 1907 (1965) ; P. K. Gallagher, J. B. MacChesney, and D. N. E. Buchanan, J. Chem. Phys. 41, 2429 (1964).
[29] B. C. Tofield, C. Greaves, and B. E. F. Fender, Mater. Res. Bull. 10, 737 (1975) ; B. C. Tofield, React. Solids [Proc. Int. Symp.] 8th, 253 (1976).
[30] T. Takeda, Y. Yamaguchi, S. Tomiyoshi, M. Fukase, M. Sugimoto, and H. Watanabe, J. Phys. Soc. Japan, 24, 446 (1968).
[31] N. Ea, These Docteur 3em cycle, Universite de Bordeaux 1 (1983) ; J. C. Grenier, N. Ea, M. Pouchard, and P. Hagenmuller, J. Solid State Chem.
[32] S. Shin, and M. Younemura, Mat. Res. Bull. 13, 1017 (1978).
[33] P. Woodward, R. D. Hoffmann, and A. W. Sleight, J. Mater. Res. 9, 2118 (1994).
[34] R.D. Shannon, Acta Cryst. A 32 (1976)
[35] A. Maignan, B. Raveau, C. Martin, and M. Hervieu, J. Solid State Chem. 144, 224 (1999).
[36] Y. Yasukawa, J. Linden, T.S. Chan, R.S. Liu, H. Yamauchi, and M. Karppinen, J. Solid State Chem. 177, 2655 (2004).
[37] J.M. Greneche, M. Venkatesan, R. Suryanarayanan, and J.M.D. Coey, Phys. Rev. B 63, 174403 (2001).
[38] N. Nguyen, F. Sriti, C. Martin, F. Bouree, J.M. Greneche, A. Ducouret, F. Studer, and B. Raveau, J. Phys.: Condens. Matter 14, 12629 (2002).
[39] R.C. Yu, P. Zhao, F.Y. Li, Z.X. Liu, and C.Q. Jin, Phys. Rev. B 69, 214405 (2004).
[40] C. Ritter, M.R. Ibarra, L. Morellon, J. Blasco, J. Garcia, and J.M. De Teresa, J. Phys.: Condens. Matter 12, 8295 (2000).
[41] O. Chmaissem, R. Kruk, B. Dabrowski, D.E. Brown, X. Xiong, S. Kolesnik, J.D. Jorgensen, and C.W. Kimball, Phys. Rev. B 62, 14197 (2000).
[42] J.A. Alonso, M.T. Casais, M.J. Martinez-Lope, J.L. Martinez, P. Velasco, A. Munoz and M.T. Fernandez-Diaz, Chem. Mater. 12, 161 (2000).
[43] Y. Moritomo, Sh. Xu, T. Akimoto, A. Machida, N. Hamada, K. Ohoyama, E. Nishibori, M. Takata, and M. Sakata, Phys. Rev. B 62, 14224 (2000).
[44] J. Navarro, C. Frontera, Ll. Balcells, B. Martinez, and J. Fontcuberta, Phys. Rev. B 64, 92411 (2001).
[45] C. Frontera, D. Rubi, J. Navarro, J.L. Garcia- Munoz, J. Fontcuberta, and C. Ritter, Phys. Rev. B 68, 12412 (2003).
[46] D. Rubi, C. Frontera, G. Herranz, J.L. Garcia- Munoz, J. Fontcuberta, and C. Ritter, J. Appl. Phys. 95, 7082 (2004).
[47] J. Navarro, J. Fontcuberta, M. Izquierdo, J. Avila, and M.C. Asensio, Phys. Rev. B 69,115101 (2004).
[48] M. Wojcik, E. Jedryka, S. Nadolski, J. Navarro, D. Rubi, and J. Fontcuberta, Phys. Rev. B 69, R100407 (2004).
[49] R. D. Shannon, and C. T. Prewitt, Acta Crystallogr. B 25, 925 (1969).
[50] Li. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martynez,, and J. Fonctcuberta, Appl. Phys. Lett. 78, 781 (2001).
[51] T. Shimada, J. Nakamura, T. Motohashi, H. Yamauchi, and M. Karppinen, Chem. Mater. 15, 4494 (2003).
[52] J. Navarro, Ll. Balcells, F. Sandiumenge, M. Bibes, A. Roig, B. Martinez, and J. Fontcuberta, J. Phys. Condens. Matter 13, 8481 (2001).
[53] A. S. Ogale, S. B. Ogale, R. Ramesh, and T. Vendatessan, Appl. Phys. Lett. 75, 537 (1999).
[54] J. Linden, M. Karppinen, T. Shimada, Y. Yasukawa, and H. Yamauchi, Phys. Rev. B 68, 174415 (2003).
[55] H. A. Kramers, Physica. 1, 182 (1934).
[56] P. W., Anderson, Phys. Rev. 79, 350 (1950).
[57] 汪建民,"陶瓷技術手冊(上)",中華民國粉末冶金協會,569 (1994).
[58] M. Vendatesan, J. M. Greneche, R. Suryanarayanan, and J. M. D. Coey, Phys. Rev. B. 63, 174403-1 (2001)
[59] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).
[60] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Phys. Rev. B. 59, 11159 (1999).
[61] T. H. Kim, M. Uehara, and S. W. Cheong, Appl. Phys. Lett. 74, 1737 (1999).
[62] A. Sharma, Appl. Phys. Lett. 83, 2484 (2003).
[63] K. Wang, and Y. Sui, Solid State Commun. 129, 135 (2004).
[64] H. Q. Yin, J. S. Zhou, J. P. Zhou, R. Dass, J. T. McDevitt, and J. B. Gooddenough, Appl. Phys. Lett. 75, 2812 (1999).
[65] A. Maignan, C. Martin, M. Hervieu, B. Raveau, and M. Magn, Mater. 211, 173 (2000).
[66] M. Vendatesan, J. M. Mater. Chem. 12, 2184 (2002).
[67] C. L. Yuan, S. G. Wang, W. H. Song, T. Yu, J. M. Dai, S. L. Ye, and Y. P. Sun, Appl. Phys. Lett. 75, 3853 (1999).
[68] D.D. Sarma, E.V. Sampathkumaran, S. Ray, R. Nagarajan, S. Majumbar, A. Kumar, G.
Nalini, and T.N. Guru Row, Solid State Commun. 114, 465 (2000).
[69] W.H. Song, J.M. Dai, S.L. Ye, K.Y. Wang, J.J. Du, and Y.P. Sun, J. Appl. Phys. 89, 7678 (2001).
[70] Hwang, H. Y., Cheong, S. W., Ong, N. P. & Batlogg, B. Phys. Rev. Lett. 77, 2041-2044 (1996).
[71] N. F. Mott, " Metal-Insulator Transitions 2nd edition " Taylar & Francis, 51 (1990).
[72] B. Chattopadhyay , A. Poddar, S. Das, C. Majumder, and R. Ranganathan, Alloys and Compounds, 28-33, 366 (2004).
[72] B. Chattopadhyay, A. Poddar, S. Das, C. Majumder,, and R. J. Ranganathan, Alloys, and Compounds, 28-33, 366 (2004).
[73] C. N. R. Rao, B. Raveau, " Colossal Magnetoresistance, Charge oredering and Related Properties fo Manganese Oxides," World Scientific, 179 (1998).
[74] L. B. Valdes, Member, IRE,"Resistivity Measurements on Germanium for Transistors" (1954).
[75] M. P. Albert, and J. F. Combs, "Correction Factors for Semiconductor slices" (1964).
[76] A.H. Habib, C. V. Tomy, A. K. Nigam, and D. Bahadur, Physica B. 362, 108-117 (2005).
[77] Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, and K. I. Kobahashi, Phys. Rev. B Vol. 61 (2000).
[78] X. F. Zhu, Q. F. Li, and L. F. Chen, Solid State Communications 144, 230-235 (2007).
[79] S. Ray, A. Kumar, S. Majumdar, E. V. Sampathkumaran, and D. D. Sarma, J. Phys.: Condens. Matter 13, 607-616, (2001)