| 研究生: |
蘇孟偉 Su, Meng-Wei |
|---|---|
| 論文名稱: |
硫化表面含鋅之銅銦鋁二硒薄膜之特性分析 Characterization of post-sulfurized Zn(S)/CuInAlSe2 stacked thin films |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 硒化 、硫化 、銅銦鋁二硫 、螢光激發光譜 |
| 外文關鍵詞: | selenization, sulfurization, CIAS, photoluminescence |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用共濺鍍的方式製作銅銦鋁先驅層,藉由控制各靶材的功率,調控先驅層的成份比例,進而調變硒化製程後之薄膜的能隙。硒化完成之銅銦鋁二硒薄膜,需再經過硫化熱退火的方式,以硫取代硒形成銅銦鋁二硫。銅銦鋁二硒的能隙因鋁含量之多寡可由1 eV到2.7 eV,而銅銦鋁二硫的能隙範圍則可擴大到1.5 eV到3.5 eV,擴大能隙為實驗之主要目的之一,藉由硫化及摻雜鋁,將能隙擴大到可見光之發光波段。
在實驗中,硫化製程可分為二種,第一種是高溫硫化銅銦鋁二硒,將薄膜中的硒完全取代為硫,第二種方式低溫硫化,僅在薄膜表面形成銅銦鋁二硫。硫化完成之後,以化學水浴法製備硫化鋅層,作為元作之N型材料,形成硫化鋅/銅銦鋁二硫之異質P-N接面。同質P-N接面的製程則是在高溫硫化之同時作鋅的摻雜。先濺鍍一層鋅在銅銦鋁二硒之上,再進行高溫化,硫化同時進行鋅的表面擴散,形成銅銦鋁二硫之同質P-N接面。
製程的最後,在N型區上方濺鍍一層摻鋁之氧化鋅(AZO),作為透明導電層,接著用銀膠製作上電極,完成二極體元作之製作。在濺鍍先驅層、化學水浴法製備硫化鋅或濺鍍鋅及濺鍍AZO時,會分別使用三個金屬罩(shadow mask),將元件規範成圓形區域,圓形區域由大至小。使用金屬罩的目的在於讓電流的分佈更加均勻,並防止非相連之薄膜層短路。元件完成之後,以電壓源偏壓進行元件發光測試,並觀察到不連續的光產生。
本實驗以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDXS)、X光繞射儀(XRD)、I-V量測、拉曼光譜儀(Raman)、低掠角繞射法(GIXRD)及螢光光譜儀(PL)等分析儀器,遂實驗步驟量測其結果,包括薄膜的表面形貌、成分比例、結構特性、二極體特性曲線等資料。
由分析結果顯示,硫化鋅/銅銦鋁二硫之異質P-N接面二極體的特性曲線最佳。
In this thesis, the CuInAl metallic precursors were deposited by co-sputtering deposition technique. The composition ratio of the precursors was controlled by the power of each metallic targets(especially Al), which influences the energy-gap of the post-selenized film. The post-selenized CuInAlSe2 film would be sulfurized by a high temperature sulfurization process and transformed into a CuInAlS2 film. The band gap of a CuIn1-xAlxSe2 film can be varied from 1 eV to 2.7 eV depending on the Al content, whereas the band gap of a CuIn1-xAlxS2 film is vaired from 1.5 eV to 3.5 eV. The bandgap modulation is one of the main purposes of this work. By using the sulfurization and Al-doping, the CIAS film's bandgap can be adjusted to be within the ultraviolet–visible region.
There were two different sulfurization processes in this study. The high temperature sulfurization could completely transform CuInAlSe2 into CuInAlS2. The surface sulfurization could sulfurize the skin layer of the CuInAlSe2 film. After the sulfurization process, ZnS film was deposited by chemical bath deposition method on the CuInAlS2 film to form a CuInAlS2/ZnS heterogeneous p-n junction. The homogeneous p-n junction was formed by transforming a skin layer of p-CuInAlS2 to a n-CuInAlS2, which can be done by Zn-doping. By sputtering Zn on CuInAlSe2 film and sulfurized it at high temperature, a CuInAlS2/CuInAlS2:Zn homogeneous p-n junction can be fabricated.
Finally, the AZO film was deposited as a transparent conductive layer. The Ag electrode was made by conductive silver paint, and the diode was fabricated. During the deposition of precursors, ZnS/Zn and AZO layer, shadow masks were used for forming a circle active area for the purpose of spreading current evenly. The devices were tested with forward bias, and a flash of lighting from the fabricated diodes can be observed.
Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to observe the surface morphology and film composition. The crystalline phase and orientation were determined by X-ray diffraction patterns, grazing incidence X-ray diffraction and raman spectroscopy. Photoluminescence measurements were to identitfy the bandgap of the CuInAlS2 film. I-V measurements were used to investigate the quality and characteristics of the diodes fabricated.
The measurement results show that the CuInAlS2/ZnS heterogeneous junction diode has better diode characteristics than CuInAlS2 homojunction diode.
[1] S. M. Sze, K. K. Ng, Physics of Semiconductior Devices: John Wiley & Sons, 2006, ch. 12.
[2] H. J. Round, “A Note on Carborundum,” Electrical World, vol. 49, p. 309, 1907.
[3] G. Destriau, “Experimental studies on the action of an electric field on phosphorescent sulfides,” J. chem. Phys, vol. 33, p. 620, 1936.
[4] N. Holonyak and S. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Applied Physics Letters, vol. 1, p. 82-83, 1962.
[5] D. G. Thomas, J. J. Hopfield and C. J. Frosch, “Isoelectronic Traps due to Nitrogen in Gallium Phosphide,” Phys. Rev. Lett., vol. 15, p. 857, 1965.
[6] M. G. Craford and W. Groves, “Vapor phase epitaxial materials for LED applications,” Proceedings of the IEEE, vol. 61, pp. 862-880, 1973.
[7] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, p. 1687, 1994
[8] S. Nakamura, M. Senoh, N. Iwasa, and S.-i. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Japanese journal of applied physics, vol. 34, pp. 797-799, 1995.
[9] http://zh.wikipedia.org/zh-tw/File:PnJunction-Diode-ReverseBias.png
[10] S. M. Sze, Semiconductor devices: physics and technology: John Wiley & Sons, 2008, ch.2; ch. 4; ch. 5; ch.9; ch.10.
[11] 郭浩中, 賴芳儀, 郭守義, LED原理與應用: 五南, 2009, ch. 2; ch.3.
[12] 陳隆建, 發光二極體之原理與製程: 全華圖書, 2006, ch. 5; ch. 6.
[13] 葉文進, 電化學沉積二硒化銅銦鎵薄膜研究, 吳鳳技術學院光機電暨材料研究所, 2008.
[14] L. Thouin,J. Vedel, “Electrodeposition and Characterization of CulnSe2 Thin Films”, The Electrochemical Society, pp. 2996-3001, 1995.
[15] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering: Wiley, 2011, pp. 571-573.
[16] J. López-García, C. Guillén, “CuIn1−xAlxSe2 thin films obtained by selenization of evaporated metallic precursor layers,” Thin Solid Films, vol. 517, pp. 2240-2243, 2009.
[17] 汪建民, 材料分析: 中國材料科學學會發行, 2001, ch.6; ch.7.
[18] Yoshihiro Hamakawa, Thin-film solar cells: next generation photovoltaics and its applications: Berlin; New York: Springer, pp. 164-169, 2004.
[19] R. A. Mickelsen and M. S. Chen, Appl. Phys. Lett, vol. 26, p.5, 1980.
[20] B. Pamplin and R. S. Feigelson,” Spary pyrolysis of CuInSe2 and related ternary semiconducting compounds”, Thin Solid Films, 60, p. 144, 1979.
[21] S. P. Grindle, A. H. Clark, S. R.Serej, J. Mcneily, L. L. Mcneily,”The effects of doping Sb on properties of CuInSe2 thin-film solar cells”, Applied Physics, vol. 51, p. 10, 1980.
[22] N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio,” Growth of Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering”, Solar Cells, 16, pp. 155-164, 1986.
[23] R. K. Pandey, S. N. Sahu and S. Chandra,” Handbook of Semiconductor Electrodeposition”, Marcel Dekker, New York, 1996.
[24] D. Pottier and G. Maurin, “ Preparation of polycrystalline thin films of CuInSe2 by electrodeposition”, Appl. Electrochem, vol. 19, p. 361, 1989.
[25] R. N. Bhattacharya, A.M. Fernandez, “CuIn1-xGaxSe2-based photovoltaic cells from electrodeposited precursor films”, Solar Energy Materials &Solar Cells, 76, p. 331-337, 2003.
[26] A. Kampmann , V. Sittinger, J. Rechid, R. Reineke-Koch ,”Large area electrodeposition of Cu(In,Ga)Se2”, Thin Solid Films, vol. 361-362, pp .309-313, 2000.
[27] A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug, M.Kalin, D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl., vol. 12, p. 97 , 2004.
[28] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析: 民全書局, p. 169, 1996.
[29] J. Kessler, D. Schmid, H. Dittrich, H. W. Schock: In Proc. 12th Europ. Photovolt. Solar Energy Conf., ed. by R. Hill, W. Palz, P. Helm (Stephens, Bedford 1994), p. 648
[30] A. M. Gabor, J. R. Tuttle, D. S. Albin, M. A. Contreras, R. Noufi, A. M. Hermann: Appl. Phys. Lett., vol. 65, p. 198, 1994.
[31] R. Noufi, R. Axton, C. Herrington, and S. Deb, “Electronic properties versus composition of thin films of CuInSe2,” Applied Physics Letters, vol. 45, pp. 668-670, 1984.
[32] Chih-Liang Wang, Wen-Chieh Shih, Jung-Wei Liao, Yung-Chung Wu, Chia-Hsiang Chen, Chih-Chieh Wang, and Chih-Huang Lai, “Anti-Corroded Molybdenum Back Electrodes by Al Doping for CuIn1-xAlxSe2 Solar Cells,” Journal of The Electrochemical Society, vol. 158, pp. 231-235, 2011.
[33] A. M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi, A. M. Hermann, “High Efficiency CuInxGa1-xSe2 Solar Cells Made from (Inx,Ga1-x)2Se3 Precursor Films,” Applied Physics Letters, vol. 65, pp. 198-200, 1994.
[34] J. Olejníˇcek, L.E. Flannery, S.A. Darveau, C.L. Exstrom, ˇS. Kment, N.J. Ianno, R.J. Soukup, “CuIn1-xAlxS2 thin films prepared by sulfurization of metallic precursors,” Applied Physics Letters, vol. 45, pp. 668-670, 1984.
[35] Susanne Siebentritt, Niklas Rega, Alexander Zajogin, and Martha Ch. Lux-Steiner, “Do we really need another PL study of CuInSe2,” Phys. Stat. Sol., vol. 9 , pp. 2304-2310, 2004.
[36] M. Benabdeslem, N. Benslim, L. Bechiri, L. Mahdjoubi, E.B. Hannech, G. Nouet, “Diffusion of Zn in CuInSe2 bulk Crystals,” Journal of Crystal Growth, vol. 274, pp. 144-148, 2005.
[37] Liudmila Larina, Donghyeop Shin, Ji Hye Kim, Byung Tae Ahn, “Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface,” Energy Environ. Sci., vol.4, pp. 3487-3493, 2011.