| 研究生: |
徐合儒 Hsu, Ho-Ju |
|---|---|
| 論文名稱: |
二維金屬棒電漿子結構的吸收與反交會現象 Avoided Resonance Crossing and Asymmetric Asorption in Plasmonic 2D Nanobars |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 有限時域差分 、表面電漿子 、反交會現象 、頻率選擇表面 |
| 外文關鍵詞: | FDTD, Surface plasmons, Avoided resonance crossing, frequency selective surface |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文以數值方法展示了在二維波導結構中,電漿子奈米金屬棒在遠場耦合時之反交會現象(Avoided resonance crossings,ARC)。由相似的奈米金屬棒所產生的強烈吸收與光捕獲可以藉由Frequency-Selective-Surface-Fabry-Perot model來解釋。此外,使之位移的奈米金屬棒也可以達到類似的現象。在左右不同方向入射時,因為結構對稱性的破壞也導致能量的交會及線寬的分裂,進而有反交會的產生。除了在PEC波導結構,於週期性結構下也能產生相同的結果。最後,我們介紹一種名為contstant k的方法來改善相同奈米金屬棒的位移下的結果。
Avoided resonance crossing phenomena were demonstrated in asymmetry nanobars obstacles placed in 2D waveguide structure. Observed asymmetric absorption and light trapping were explained by frequency-selective-surface (FSS)–Fabry-Perot (FP) model. Besides, shifted bars in PEC waveguide also exhibit similar phenomena. We observe linewidth anti-crossing but energy crossing of the absorption peak from different side illumination by varying the gap in bar arrays. On the other hands, we also simulate the bars by using period structure to obtain the same result. In the end, we introduce a new oblique angle approach, which is constant k method, to improve the result in shifted identical bars.
1. W. D. Heiss, “Repulsion of resonance states and exceptional points,” Phys. Rev. E, vol. 61, pp. 929, 2000.
2. Qinghai Song, Li Ge, Jan Wiersig, Huo Cao, “Formation of long-lived resonance in hexagonal cavities by strong coupling of superscar modes,” Physical Review A, vol. 88, pp. 23834, 2013.
3. H.Cao, J. Wiersig, “Dielectric microcavities model systems for wave chaos and non-Hermitian Physics, “ Rev.Mod. Phys, vol. 87, pp. 61, 2015.
4. J. Wiersig, “Formation of long lived scarlike modes near avoided resonance crossing in optical microcavities,” Phys. Rev. Lett, vol. 97, pp. 253901, 2006.
5. M. Faraday, Philos. Trans, “The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light,” Philos. Trans, vol. 147, pp. 145, 1857.
6. Mie, G. “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann Phys-Berlin, vol. 25, pp. 377, 1908.
7. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, 1995.
8. Craig F. Bohren, Donald R. Huffman, Absorption and Scattering of Light by Small Particles, WILEY, 2007.
9. 曾賢德, “金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作”,物理雙月刊, vol. 32,pp. 126, 2010.
10. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag, vol. 4, pp. 393, 1902.
11. U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves),” J. Opt. Soc. Am, vol. 31, pp. 213, 1941..
12. Qinghai Song, Li Ge, Jan Wiersig, Huo Cao, “Formation of long-lived resonance in hexagonal cavities by strong coupling of superscar modes,” Physical Review A, vol. 88, pp. 23834, 2013.
13. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett, vol. 101, pp. 143902, 2008.
14. S. Deb and S. D. Gupta, “Critical coupling in a Fabry Perot cavity with metamaterial mirrors,” Opt. Comm, vol. 283, pp. 4764, 2010.
校內:2022-09-01公開