| 研究生: |
廖書賢 Liao, Shu-Hsien |
|---|---|
| 論文名稱: |
結合介電泳晶片及拉曼光譜法進行油污土壤中油分解菌的分離和鑑定 Separation and Identification of Oil Degradation Bacteria in Oil Contaminated Soil by Integrating Dielectrophoresis Chip and Raman Spectroscopy |
| 指導教授: |
張憲彰
Chang, Hsien-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 生物復育 、油分解菌 、介電泳力 、拉曼光譜儀 |
| 外文關鍵詞: | bioremediation, Raman Spectroscopy, dielectrophoresis force, oil degradation bacteria |
| 相關次數: | 點閱:132 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣的土壤及地下水受油品污染的情況日益嚴重,其中儲油槽與管路之老舊,所造成的管線破裂、洩漏等是其主因。在汰舊換新之際的環境復原,當今環保科技公司常以物理或化學性的處理來解決,然二次環境污染之虞卻又不可免。在此窘境之中,自古既有,然效果較為緩慢的生物復育技術才又被重視。此技術乃將油分解菌佈入土壤中來進行,然迥異於以往者,現今技術著重於提高土壤復育的時效性。依此為前提之中,除搭配絕佳的菌劑與恰當的助劑來佈施之外,能夠迅速反應出土壤內油分解菌活性的監測技術實不可缺。本研究之目的,旨在希望研發出能鑑定土壤內的油分解菌之生物介電泳(DEP)晶片的分離技術平台,繼而結合拉曼光譜法對菌株進行鑑定,使本研究團隊針對重油與柴油之分解所選擇的E. aurantiacum CC-LSH4-1和A. junii CC-FH2以及 R. erythropolis CC-BC11和G. alkanivorans CC-JG39,配合生物性界面活性劑進行施工後的效果得以被評估。本研究利用上述四株菌不同介電特性設計出擁有平行式電極、箭頭型電極和城垛式電極等三種設計的三維DEP晶片,於稀釋的PBS溶液(2 mS/cm)下成功地同時分離此四株菌。DEP晶片的交流電條件方面,若設予Vp-p為15 V,而頻率各為4、8、15 MHz時,會顯示出正介電泳的作用力,於前三處電極區,可分別捕捉到E. aurantiacum CC-LSH4-1, A. junii CC-FH2及R. erythropolis CC-BC11,而G. alkanivorans CC-JG39則在最後的電極區以300 kHz,呈負介電泳力作用方式被捕捉到。另在拉曼光譜分析上,發現在633 nm氦氖雷射(17 mW)下,此四株菌均有其特異光譜特性,我們擷取其各波數與強度值,導入於主成份分析法(PCA)和階層聚類分析法(HCA)進行菌種的分類,發現已可明顯將此四株菌的光譜分別歸類,這兩種資料建立將可縮短光譜的分析時間並降低人為判斷的誤差。繼之也以G. alkanivorans CC-JG39為例,先經DEP分離後釋出取樣,此樣本液置於鍍金玻片上再經拉曼光譜分析,從PCA與HCA辨認出為該細菌無誤的結果。最後,我們雖然曾嘗試以懸浮搭配離心之前處理,想從含菌之土壤樣本中取得其細菌樣本,唯所含的極細微粒會有堵住微管道之虞,且前處理後的菌相與菌量,無法確保,導致較具體的結果尚待檢討,但本技術平台未來應有機會被運用在土壤內油分解菌活性的監測上。
Recently, with industry accidents like leaking oil from old pipe, oil container, the problems of oil pollution in soil and groundwater are getting more and more seriously. We use bioaugmentation method of bioremediation technologies to execute soil bioremediation. And then we choose Exiguobacterium aurantiacum CC-LSH4-1, Acinetobacter junii CC-FH2, Rhodococcus erythropolis CC-BC11 and Gordonia alkanivorans CC-JG39 according to their high degradation rate. The purpose of our research is to combine DEP chip and Raman spectroscopy to separate and identify four kinds of oil degradation bacteria from the soil. The 3D DEP chip was exclusively made according to the dielectric properties of four kinds of oil degradation bacteria. Consequently, we design three kinds of electrode which are parallel, arrow and castellated electrode. In the PBS (2 mS/cm) solution, E. aurantiacum CC-LSH4-1, A. junii CC-FH2 and R. erythropolis CC-BC11 were individually trapped at 4 MHz, 8 MHz and 15 MHz by positive DEP . At the same time, G. alkanivorans CC-JG39 was trapped at 300 kHz by negative DEP. After that we can find 30% of similarity and 70% of dissimilarity from qualitative analysis results according to four kinds of bacteria wavenumber. And then we also use principal component analysis and hierarchical cluster analysis methods to execute classification of bacteria. The four kinds of bacteria can be categorized in different area. Currently with this DEP chip we can accomplish the experiment of the trapping for oil degradation bacteria in the soil. by Spectra Analysis,qualitative analysis,statistic analysis we can discriminate the difference of these bacteria in Raman spectra, and therefore this device will apply to the examination of these oil degradation bacteria from soil in the future.
[1] 土壤及地下水污染整治網http://sgw.epa.gov.tw/public/
[2] 楊明潔,柴油分解菌與生物界面活性劑應用於土壤地下水復育之研究,碩士碩文,國立成功大學環境工程系(95)
[3] 潘柏岑,應用土耕法配合生物添加促進法整治柴油污染土壤之研究,碩士論文,國立成功大學環境工程系(94)
[4] 張仁福,環境微生物學,文京圖書有限公司,臺北市(86)
[5] 張讚昌、邱南昌、尤封陵、施玟玲、朱敬儀、謝瑜琦、李文珍,實用微生物學,華格那企業有限公司,臺中市(92)
[6] 賴志遠、郭俊賢、馬仁宏、黃郁棻、林翠芊,微陣列生物晶片,財團法人國家實驗研究院科技政策研究與資訊中心,臺北市(94)
[7] 鄭凱安、葉乃菁、殷正華、林海珍、劉建君、郭光輝,微流體生物晶片,財團法人國家實驗研究院科技政策研究與資訊中心,臺北市(94)
[8] Cole KA, Krizman DB, Emmert-Buck MR, The genetics of cancer-a 3D model, Nature Genetics, 21, 38-41, 1999.
[9] Debouk C, Goodfellow PN, DNA microarrays in drug discovery and development, Nature Genetics, 21, 48-50, 1999.
[10] Hacia JG, Resequencing and mutational analysis using oligonucleotide microarrays, Nature Genetics, 21, 42-47, 1999.
[11] T. B. Jones, Electromechanics of particles, Cambridge University Press, 1995.
[12] Ferraro J. R. and K. Nakamoto, Introductory Raman Spectroscopy, Academic Press, San Diego, 71-92, 1994.
[13] 羅積玉,多元統計分析方法與應用,科技圖書股份有限公司出版(79)
[14] Anil Sebastian, Anne-Marie Buckle and Gerard H Markx, Formation of multilayer aggregates of mammalian cells by dielectrophoresis, Journal of micromechanics and microengineering, 16, 1769-1777, 2006.
[15] Liju Yang, Padmapriya P. Banada, Mohammad R. Chatni, Kwan Seop Lim, Arun K. Bhunia, Michael Ladisch and Rashid Bashir, A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria Monocytogenes, Lab on a Chip, 6, 896-905, 2006.
[16] Urban Seger, Shady Gawad, Robert Johann, Arnaud Bertsch and Philippe Renaud, Cell immersion and cell dipping in microfluidic devices, Lab on a Chip, 4, 148-151, 2004.
[17] D F Chen, H Du and WH Li, A 3D paired microelectrode array for accumulation and separation of microparticles, Journal of Micromechanics and Microengineering, 16, 1162-1169, 2006.
[18] Peter Gascoyne, Chulabhorn Mahidol, Mathuros Ruchirawat, Jutamaad Satayavivad, Piyajit Watcharasit and Frederick F. Becker, Microsample preparation by dielectrophoresis: isolation of malaria, Lab on a Chip, 2, 70-75, 2002.
[19] Junya Suehiro, Ryo Hamada, Daisuke Noutomi, Masanori Shutou, Masanori Hara, Selective detection of viable bacteria using dielectrophoretic impedance measurement method, Journal of Electrostatics, 57, 157-168, 2003.
[20] Youlan Li, Karan V.I.S. Kaler, Dielectrophoretic fluidic cell fractionation system, Analytica Chimica Acta, 507, 151-161, 2004.
[21] Demir Akin, Haibo Li, and Rashid Bashir, Real-time virus trapping and fluorescent imaging in microfluidic devices, Nano Letters, 4, 257-259, 2004.
[22] Il Doh, Young-Ho Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process, Sensors and Actuators A, 121, 59-65, 2005.
[23] Xiaoyuan Hu, Paul H. Bessette, Jiangrong Qian, Carl D. Meinhart, Patrick S. Daugherty, and Hyongsok T. Soh, Marker-specific sorting of rare cells using dielectrophoresis, Proceedings of the National Academy of Sciences, 102, 15757-15761, 2005.
[24] Chen-Ta Ho, Ruei-Zeng Lin, Wen-Yu Chang, Hwan-You Chang and Cheng-Hsien Liu, Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap, Lab on a Chip, 6, 724-734, 2006.
[25] K. Maquelin, L.-P. Choo-Smith, H. P. Endtz, H. A. Bruining, and G. J. Puppels, Rapid identification of candida species by confocal Raman microspectroscopy, Journal of Clinical Microbiology, 40, 594-600, 2002.
[26] K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H.Ph. Endtz, D. Naumann, G.J. Puppels, Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, 51, 255-271, 2002.
[27] K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. A. Ngo-Thi, T. van Vreeswijk, M. Sta¨mmler, H. P. Endtz, H. A. Bruining, D. Naumann, and G. J. Puppels, Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures, Journal of Clinical Microbiology, 41, 324-329, 2003.
[28] Wei E. Huang, Robert I. Griffiths, Ian P. Thompson, Mark J. Bailey, and Andrew S. Whiteley, Raman microscopic analysis of single microbial cells, Analytical Chemistry, 76, 4452-4458, 2004.
[29] M. Harz, P. Ro¨sch, K.-D. Peschke, O. Ronneberger, H. Burkhardtb and J. Popp, Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, Analyst, 130, 1543-1550, 2005.
[30] E. Consuelo Lo´ pez-Dı´ez, Catherine L. Winder, Lorna Ashton, Felicity Currie, and Royston Goodacre, Monitoring the mode of action of antibiotics using Raman spectroscopy: investigating subinhibitory effects of amikacin on Pseudomonas aeruginosa, Analytical Chemistry, 77, 2901-2906, 2005.
[31] Kees Maquelin, Lenie Dijkshoorn, Tanny J.K. van der Reijden, Gerwin J. Puppels, Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy, Journal of Microbiological Methods, 64, 126-131, 2006.
[32] C. C. Young, T. C. Lin, M. S. Yeh, F. T. Shen and J. S. Chan, Identification and kinetic characteristics of an indigenous diesel-degrading Gordonia alkanivorans strain, World Journal of Microbiology & Biotechnology, 21, 1409, 2005.
[33] M. Washizu, S. Suzuki, O. Kurosawa, T. Nishizaka, T. Shinohara, Molecular dielectrophoresis of biopolymers, IEEE Transactions on Industry Applications, 30, 835-843, 1994.
[34] A. Ramos, H. Morgan, N.G. Green, A. Castellanos, AC electric-field induced fluid flow in microelectrodes, Journal of Colloid and Interface Science, 217, 420-422, 1999.
[35] N. G. Green, A. Ramos, A. Gonzalez, A. Castellanos, H. Morgan, Electrothermally induced fluid flow on microelectrodes, Journal of Electrostatics, 53, 71-87, 2001.
[36] Nicolas G Green, Antonio Ramos, Antonio Gonzalez, Antonio Castellanos and Hywel Morgan, Electric field induced fluid flow on microelectrodes: the effect of illumination, Journal of Physics D-Applied Phtsics, 33, L13-L17, 2000.
[37] Kai F Hoettges, Martin B McDonnell and Michael P Hughes, Use of combined dielectrophoretic/electrohydrodynamic forces for biosensor enhancement, Journal of Physics D-Applied Phtsics, 36, L101-L104, 2003.
[38] Pak Kin Wong, Che-Yang Chen, Tza-Huei Wang, and Chih-Ming Ho, Electrokinetic bioprocessor for concentrating cells and molecules, Analytical Chemistry, 76, 6908-6914, 2004.
[39] W. Mike Arnold, Nick R. Franich, Cell isolation and growth in electric-field defined micro-wells, Current Applied Physics, 6, 371-374, 2006.
[40] K. Christian Schuster, Ingo Reese, Eva Urlaub, J. Richard Gapes, and Bernhard Lendl, Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy, Analytical Chemistry, 72, 5529-5534, 2000.
[41] K.C. Schuster, E. Urlaub, J.R. Gapes, Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture, Journal of Microbiological Methods, 42, 29-38, 2000.
[42] K. Maquelin, C. Kirschner, L.-P. Choo-Smith, N. van den Braak, H.Ph. Endtz, D. Naumann, G.J. Puppels, Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, 51, 255-271, 2002.
[43] Wei E. Huang, Robert I. Griffiths, Ian P. Thompson, Mark J. Bailey, and Andrew S. Whiteley, Raman microscopic analysis of single microbial cells, Analytical Chemistry, 76, 4452-4458, 2004.
[44] Kees Maquelin, Lin-P’ing Choo-Smith, Tamara van Vreeswijk, Hubert Ph. Endtz, Brian Smith, Robert Bennett, Hajo A. Bruining, and Gerwin J. Puppels, Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium, Analytical Chemistry, 72, 12-19, 2000.
[45] Mary L. Laucks, Atanu Sengupta, Karen Junge, E. James Davis, and Brian D. Swanson, Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy, Society for Applied Spectroscopy, 59, 1222-1228, 2005.
[46] Ute Neugebauer, Petra Rçsch, Michael Schmitt, Jrgen Popp, Carine Julien, Akiko Rasmussen, Christian Budich, and Volker Deckert, On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy, ChemPhysChem, 7, 1428-1430, 2006.
[47] P. Ro¨sch, M. Schmitt, W. Kiefer, J. Popp, The identification of microorganisms by micro-Raman spectroscopy, Journal of Molecular Structure, 661, 363-369, 2003.
[48] Petra Ro¨sch, Michaela Harz, Michael Schmitt, Klaus-Dieter Peschke, Olaf Ronneberger, Hans Burkhardt, Hans-Walter Motzkus, Markus Lankers, Stefan Hofer, Hans Thiele, and Ju¨rgen Popp, Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: application to clean-room-relevant biological contaminations, Applied and Environmental Microbiology, 71, 1626-1637, 2005.
[49] 曾依蕾,柴油降解菌組合的最佳化,碩士論文,國立成功大學環境工程系(94)
[50] 林聖凱,發展分離具不同特性微生物與抗生素感受性試驗之介電泳晶片,碩士碩文,國立成功大學醫學工程研究所(93)
[51] 陳昭宏,在無鍍有微型電極之介電泳晶片下應用交流電動力進行的微粒子操控研究,碩士碩文,國立成功大學醫學工程研究所(95)
[52] 陳志在,結合表面增顯拉曼散射及奈米粒子免疫分析技術之研發,碩士碩文,國立成功大學醫學工程研究所(95)
[53] 張健邦,應用多變量分析,文富出版社,臺北市(84)