| 研究生: |
蕭慧德 Hsiao, Huey-der |
|---|---|
| 論文名稱: |
演化式支援向量機於企業危機診斷之研究 A study of GA based support vector machine in business crisis diagnosis |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 特徵變數 、支援向量機 、企業危機 、顯著性分析 |
| 外文關鍵詞: | saliency analysis, features, business crisis, support vector machine |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業危機的發生不僅直接影響公司利害關係人之權益,並且對於協力互助的供應鏈體系亦會引起連串的危機反應,甚而導致整個社會也可能遭受巨大的損害,因此建立一個企業危機診斷模型,篩選出具顯著性的特徵變數,用以偵測企業危機發生之警訊,以使經營階層能儘早採取措施予以因應,實有其必要性與實務性。
本研究建構一以實數值遺傳演算法結合支援向量機作為企業危機診斷的模型,其間比較財務指標與智慧資本指標對診斷模型的影響,以及透過鑑別分析法以比較本模型的優越性與穩定性,並以鑑別分析法與顯著性分析法篩選出對診斷模型具顯著性的特徵變數,以提升診斷模型的效率與效能。
經由實證分析結果,本研究獲得以下的結論:企業危機診斷的特徵變數應以財務與智慧資本的指標為佳;GA-SVM的方法較傳統的鑑別分析法優越與穩定;適當的縮減特徵變數對診斷模型的準確度有相當的助益;顯著性分析法所篩選出的8個特徵變數對診斷模型的助益較傳統鑑別分析法所篩選出的6個特徵變數為佳。
本研究期望藉由此診斷模型的運作而找出對企業危機具有顯著敏感度的8個特徵變數,可以作為企業界於做自我診斷與衡量時的參考。
A business crisis affects not only the rights and interests of stake holders, but also causes a series of crises in collaboration systems and supply chains.
Furthermore, these situations cause considerable loss and damage to society in general. Therefore, it is necessary to establish a diagnostic model for business crises and determine their warning signs to help business managers prepare earlier counter measures.
This study uses a real-valued genetic algorithm integrated with a SVM model as a diagnostic model for business crises. This study then compares financial indicators and intellectual capital indicators to evaluate the influence of accuracy on the diagnostic model. Using a discriminant analysis method, this study further compares the accuracy and stability of the proposed model. Additionally, a discriminant analysis method and a saliency analysis method are applied to the 8 significant features in the diagnostic model, improving both efficiency and effectiveness.
Results indicate that eight features for business crises diagnosis are based on the indicators of financial and intellectual capital. The GA-SVM has better performance and stability than traditional discriminant analysis methods. An appropriately reduced number of feature variables should be quite helpful in improving the accuracy of diagnostic models. The eight features screened by the saliency analysis method are actually more helpful than the six features selected by traditional discriminant methods.
This research identifies the eight features with significant sensitivity to business crises using a diagnostic model. These can be used by firms for self-diagnosis and evaluation.
中文部份
1、林保村,「支持向量迴歸:系統式設計和效能分析」,國立台灣科技大學電機工程研究所,博士論文,2001。
2、陳寬裕,「演化式支援向量迴歸於旅遊需求之預測」,長榮大學,經營管理研究所,博士論文,2007。
3、陳肇榮,「運用財務比率預測企業危機之實證研究」,國立政治大學企業管理研究所,博士論文,1983。
4、許博傑,「實數編碼與二位元編碼遺傳演算法之性能比較研究」,國立台灣科技大學機械研究所,碩士論文,2000。
英文部份
1. Ahn, B. S., Cho, S. S. & Kim, C. Y., The integrated methodology of rough set theory and artificial neural network for business failure prediction, Expert Systems with Applications, 18, 65-74, 2000.
2. Altman, E. I., Corporate Financial Distress: A Complete Guide to Predicting, Avoiding and Dealing with Bankruptcy, New York: John Wiley and Sons, 1983.
3. Altman, E. I., Marco, G. & Varetto, F., Corporate distress diagnosis comparisons using linear discriminant analysis and neural networks, Journal of Banking and Finance, 18(3), 505–529, 1994.
4. Beaver, W. H., Financial ratios and predictors of failure, Journal of Accounting Research, 4, 71-111, 1966.
5. Bell, C. R., Intellectual capital, Executive Excellence, 14(1), 1-15, 1997.
6. Belue, L. M., Bauer, K. W., Determining input features for multilayer perceptrons, Neurocomputing, 7(2), 111–121, 1995.
7. Blum, M., Failing company discriminant analysis, Journal of Accounting Research, 12, 1-25, 1974.
8. Bontis, N., Intellectual capital: An exploratory study that develops measures and models, Management Decision, 36(2), 63-76, 1998.
9. Boritz, J., Kennedy, D., Effectiveness of neural networks types for prediction of business failure, Expert Systems with Applications, 9, 503–512, 1995.
10. Boser, B. E., Guyon, I. M. & Vapnik, V., A training algorithm for optimal margin classifiers, In Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, ACM, 1992.
11. Brooking, A., Intellectual Capital, London: International Thomson Business Press, 1996.
12. Burges, C. J. C., A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, 2(2), 955-974, 1998.
13. Chang, C. C., Lin, C. J., LIBSVM: a library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2003.
14. Chang, C. C., Hsu, C. W. & Lin, C. J., The analysis of decomposition methods for support vector machines, IEEE Transactions on Neural Networks, 11(4), 1003-1008, 2000.
15. Chen, K.Y., Wang, C.H., A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan, Expert Systems with Applications, 32, 254-264, 2007.
16. Cherkassky, V., Mulier, F., Learning from Data: Concepts, Theory, and Methods, New York: John Wiley & Sons, 1998.
17. Chtioui, Y., Bertrand, D. & Barba, D., Feature selection by a genetic algorithm application to seed discrimination by artificial vision, Journal of Food Agric, 76, 77-86, 1998.
18. Chung, H. M., Special section: data mining, Journal of Management Information Systems, 16(1), 11-16, 1999.
19. Chung, H. M., Tam, K. Y., A Comparative analysis of inductive learning algorithm, intelligent systems in accounting, Finance and Management, 2, 3-18, 1993.
20. Coat, P. K., Fant, L. F., Recognizing financial distress patterns using a neural network tool, Financial Management, 12(3), 142-155, 1993.
21. Cortes, C., Vapnik, V. N., Support vector networks. Machine Learning, 20, 273- 297, 1995.
22. Cristianini, N., Campbell, C. & Shawe-Taylor, J., Dynamically Adapting Kernels in Support Vector Machines, Advances in neural information processing systems, Cambridge, MA: MIT Press, 1999.
23. Deakin, E., A Discriminant Analysis of Predictors of Business Failure, Journal of Accounting Research, 10, 167-179, 1972.
24. Deb, K., Agrawal, R. B., Simulated binary crossover for continuous search space, Complex System, 9(2), 115-148, 1995.
25. Deb, K., Goyal, M., A combined genetic adaptive search (geneAS) for engineering design, Computer Science and Informatics, 26(4), 30-45, 1996.
26. Deb, K., Kumar, A., real-coded genetic algorithms with simulated binary crossover: studies on multimodal and multiobjective problems, Complex Systems, 9, 431-454, 1995.
27. Duan, K., Keerthi, S. & Poo, A., Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters (Technical Report), Singapore: National University of Singapore, Department of Mechanical Engineering, 2001.
28. Dutta, S., Shskhar, S., Bond Rating: A non-conservative application of neural networks, Proceedings of the IEEE International Conference on Neural Networks-San Diego, 2, 443-450, 1988.
29. Edvinsson, L., Malone, M. S., Intellectual Capital, Harper Collins Publishers, Inc., New York, 1997.
30. Falbo, P., Credit-scoring by enlarged discriminant models, Omega, 19(4), 275–289, 1991.
31. Fan, A., Palaniswami, M., Selecting bankruptcy predictors using a support vector machine approach, Proceeding of the international joint conference on neural network, 6, 354–359, 2000.
32. Flagg, J. C., Giroux, G. A. & Wiggins, C. E., Predicting corporate bankruptcy using failing firms, Review of Financial Economics, 1, 67-78, 1991.
33. Fletcher, D., Goss, E., Forecasting with neural networks: An application using bankruptcy data, Information and Management, 24(3), 159-167, 1993.
34. Foster, G., Financial Statement Analysis, Englewood Cliffs, New Jersey: Prentice-Hall Inc, 1978.
35. Fröhlich, H., Chapelle, O., Feature selection for support vector machines by means of genetic algorithms, Proceedings of the 15th IEEE international conference on tools with artificial intelligence, Sacramento, CA, USA, 142–148, 2003.
36. Frydman, H. E., Altman, E. I., & Kao, D., Introducing recursive partitioning for financial classification: The case of financial distress, The Journal of Finance, 40(1), 269–291, 1985.
37. Gestel, T. V., Suykens, J. A. K., Baestaens, D. E., Lambrechts, A., Lanckriet, G. & Vandaele, B., Financial time series prediction using least squares support vector machines within the evidence framework, IEEE Transactions Neural Networks, 12(4), 809–821, 2001.
38. Gilson, S. C., Management turnover and financial distress, Journal of Financial Economics, 25, 241-262, 1989.
39. Goldberg, D. E., Genetic algorithms in search, optimization and machine learning, New York: Addison-Wesley, 1989.
40. Goldberg, D. E., Real-coded genetic algorithms, virtual alphabets, and blocking, Complex Systems, 5, 139-167, 1991.
41. Haupt, R. L., Haupt, S.E., Practical Genetic Algorithms, New York: John Wiley & Sons Inc, 1998.
42. Holland, J. H., Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press, 1975.
43. Hsu, C. W., Chang, C. C. & Lin, C. J., A Practical Guide to Support Vector Classification, www.csie.ntu.edu.tw/~cjlin/talks.html, 2003.
44. Huang C. L., Wang C. J., A GA-based feature selection and parameters optimization for support vector machines, Expert Systems with Applications, 31, 231–240, 2006.
45. Huang, Z., Chen, H., Hsu, C. J., Chen, W. H. & Wu, S., Credit rating analysis with support vector machine and neural networks: A market comparative study, Decision Support Systems, 37, 543–558, 2004.
46. Hutchinson, J. M., Lo, A. W. & Poggio, T., A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks, Journal of Finance, 49(3), 851-889, 1994.
47. Joachims, T., Text categorization with support vector machines: learning with many relevant features, European Conference on Machine Learning ECML-98, 137-142, 1998.
48. Jo, H., Han, I. & Lee, H., Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis, Expert Systems with Applications, 13(2), 97–108, 1997.
49. Johnson, R. A., Wichern, D. W., Applied Multivariate Statistical Analysis, Prentice-Hall Inc.: New York, 1998.
50. Kaplan, R. S., Norton, D. P., The Balanced Scorecard: Translating Strategy into Action, the president and fellows of Harvard College, 1996.
51. Kanpur Genetic Algorithms Laboratory., Software available at http: // www.iitk.ac.in/ kangal/ codes, 2001.
52. Karels, G. V., Prakash, A. J., Multivariate Normality and Forecasting of Business Bankruptcy, Journal of Business Finance and Accounting, 14(4), 573-593, 1987.
53. Keerthi S. S., Gilbert E. G., Convergence of a generalized SMO algorithm for SVM classifier design, Machine Learning, 46, 351-360, 2002.
54. Kim, K., Financial time series forecasting using support vector machines, Neurocomputing, 55, 307–319, 2003.
55. Kryzanowski, L., Galler, M., Analysis of small-business financial statements using neural nets, Journal of Accounting, Auditing and Finance, 10(1), 147-172, 1995.
56. Lau, A. H. L., A five-state financial distress prediction model, Journal of Accounting Research, 25(1), 127-138, 1987.
57. Lin, C. Y., Hajela, P., Genetic algorithms in structural optimization problems with discrete and integer design variables, Engineering Optimization, 19(3), 309-327, 1992.
58. Loh, W., Vanichsetakul, N., Tree-structured classification via generalized discriminant analysis, Journal of the American Statistical Association, 83, 715-728, 1988.
59. Malhotra, R., Malhotra, D. K., Differentiating between good credits and bad credits using neuro-fuzzy systems, European Journal of Operational Research, 136(2), 190–211, 2002.
60. Mao, K. Z., Feature subset selection for support vector machines through discriminative function pruning analysis, IEEE Transactions on Systems, Man, and Cybernetics, 34(1), 60–67, 2004.
61. Martin, D., Early warning of bank failure: A logit regression approach, Journal of Banking and Finance, 1, 249–276, 1997.
62. Masoulas, V., Organizational requirements definition for intellectual capital management, International Journal of Technology Management, 16(2), 126-143, 1998.
63. Mattera, D., Haykin, S., Support Vector Machines for Dynamic Reconstruction of a Chaotic System, Advances in Kernel Methods: Support Vector Machine. 211-242. Cambridge: MIT Press, 1999.
64. McGurr, P. T., DeVaney, S. A., Predicting business failure of retail firms: an analysis using mixed industry model, Journal of Business Research, 43, 169-176, 1998.
65. Michalewicz, Z., Genetic algorithm + Data structures = Evolution programs, New York: Springer, 1999.
66. Min J. H., Lee Y. C., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters, Expert Systems with Applications, 28, 603–614, 2005.
67. Min S. H., Lee J. & Han I., Hybrid genetic algorithms and support vector machines for bankruptcy prediction, Expert Systems with Applications, 31, 652–660, 2006.
68. Morgan, J. N., Sonquist, J. A., Problem in the analysis of survey data, Journal of the American Statistical Association, 58, 1963.
69. Ohlson, J. A., Financial ratios and probabilistic prediction of bankruptcy, Journal of Accounting Research, 18(1), 109–131, 1980a.
70. Ohlson, J. A., Financial ratios and probabilistic prediction of bankruptcy prediction, Journal of Accounting Research, 18(1), 109–131, 1980b.
71. Pai, P. F., Hong, W. C., Forecasting regional electric load based on recurrent support vector machines with genetic algorithms, Electric Power Systems Research, 74(3), 417-425, 2005.
72. Peng, K. L., Wu, C. H. & Goo, Y. J., The development of a new statistical technique for relating financial information to stock market returns, International Journal of Management, 21(4), 492-505, 2004.
73. Quinlan, W. F., Hansen, J. V., Inducing rules for expert system development, Management Science, 34, 1403-1415, 1998.
74. Rumelhart, E., Hinton, G. E. & Williams, R. J., Learning internal representations by error propagation in parallel distributed processing, MIT Press: Cambridge, 318-362, 1985.
75. Sanchez, M. S., Sarabia, L. A., Efficiency of multi-layered feed-forward neural networks on classification in relation to linear discriminant analysis, quadratic discriminant analysis and regularized discriminant analysis, Chemometrics and Intelligent Laboratory Systems, 287-303, 1995.
76. Schölkopf, B., Burges, J. & Smola, A., Advances in Kernel Methods: Support Vector Machine, Cambridge: MIT Press, 1999.
77. Schölkopf, B., Smola, A., Learning with Kernels, Cambridge: MIT Press, 2002.
78. Sharma, S., Applied Multivariate Techniques, Wiley: New York, 1996.
79. Shih, J.Y., Chen, W.H., A study of Taiwan’s issuer credit rating systems using support vector machines, Expert Systems with Applications, 30, 427-435, 2006.
80. Shin, K. S., Lee, T. S. & Kim H. J., An application of support vector machines in bankruptcy prediction model, Expert Systems with Applications, 28, 127-135, 2005.
81. Smola, AJ., Learning with kernels, Unpublished Doctoral Dissertation, Department of Computer Science, Technical University Berlin, Gemany, 1998.
82. Srinivasan, V., Ruparel, B., CGX: An expert support system for credit granting, European Journal of Operational Research, 45, 293–308, 1990.
83. Stewart, T. A., Intellectual Capital: The New Wealth of Organizations, Bantam Doubleday Dell Publishing Group, Inc., New York, 1997.
84. Sueyoshi, T., Mixed integer programming approach of extended DEA discriminate analysis, European Journal of Operational Research,(forthcoming), 2003.
85. Sveiby, K., The New Organizational Wealth- Managing and Measuring Knowledge-Based Assets, Big Apple Tuttle-Mori Agency, Incm Co., Ltd, 1997.
86. Swales, G. S., Yoon, Y., Applying artificial neural networks to investment analysis, Financial Analysts Journal, 48(5), 78-80, 1992.
87. Tang, K. S., Man, K. F., Kwong, S. & He, Q., Genetic algorithms and their applications, IEEE Signal Processing Magazine, 13, 22-37, 1996.
88. Tay, F. E. H., Cao, L., A comparative study of saliency analysis and genetic algorithm for feature selection in support vector machines, Intelligent Data Analysis, 5, 191-209, 2001.
89. Tay, F. E. H., Cao, L., Application of support vector machines in financial time series forecasting, Omega, 29(4), 309-317, 2001.
90. Tay, F. E. H., Cao, L., Modified support vector machines in financial time series forecasting, Neurocomputing, 48, 847–861, 2002.
91. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design, New York: McGraw-Hill, 1984.
92. Van Gestel, T., Suykens, J., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., et al., Benchmarking least squares support vector machine classifiers. Machine Learning, 54(1), 5–32, 2004
93. Vapnik, V. N., The Nature of Statistical Learning Theory, New York: Springer-Verlag, 1995.
94. Viaene, S., Derrig, R. A., Baesens, B. & Dedene, G., A comparison of state-of-the-art classification techniques for expert automobile insurance claim fraud detection, Journal of Risk and Insurance, 69(3), 373–421, 2002.
95. Ward, T. J., Foster, B. P., A not on selecting a response measure for financial distress, Journal of Business Finance and Accounting, 24, 869-879, 1997.
96. Wehrens, R., Buydens, L. M. C., Evolutionary optimization: a tutorial, Trends in Analytical Chemistry, 17, 193-203, 1998.
97. West, D., Neural network credit scoring models, Computers and Operations Research, 27, 1131–1152, 2000.
98. Wilson, R. L., Sharda, R., Bankruptcy prediction using neural networks, Decision Support Systems, 11(5), 545-557, 1994.
99. Wong, F., Lee, D., A hybrid neural network for stock selection, In Proceedings of the 2nd Annual International Conference on Neural Network, 1993.
100. Yang, J. M., Kao, C. Y., A Combined evolutionary algorithm for real parameter optimization, Proceedings of the 1996 IEEE International Conference on Evolutionary Computation, Piscataway, NJ, USA, 732-737, 1996.
101. Yang, Y., Liu, X., A re-examination of text categorization methods, Proceedings of the 22nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 42-49, 1999.
102. Yamamoto, Y., Zenios, S. A., Predicting prepayment rates for mortgages using the cascade-correlation learning algorithm, Journal of Fixed Income, 2(4), 86-96, 1993.
103. Zurada, J.M., Malinowski A. & Usui, S., Perturbation method for deleting redundant inputs of perceptron networks, Neurocomputing, 14, 177-193, 1997.
104. Zmijewski, M. E., Methodological issues related to the estimation of financial distress prediction models, Journal of Accounting Research, 22(Supplement), 59-82, 1984.