簡易檢索 / 詳目顯示

研究生: 陳哲昶
Chen, Jhe-chang
論文名稱: 偶氮染料摻雜液晶-高分子球型聚合物薄膜垂直吸附效應之研究及其應用
Study of homeotropic adsorption effect on azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal films and its applications
指導教授: 傅永貴
Fuh, Andy
李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 垂直吸附聚合物液晶偶氮染料
外文關鍵詞: homeotropic adsorption, liquid crystal, azo dye, polymer
相關次數: 點閱:79下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中我們提出了在摻雜偶氮染料之高分子球型液晶聚合物混合薄膜中之光引致偶氮染料分子垂直吸附的機制。實驗結果證明若在照光激發偶氮染料期間外加適當強度之交流電壓及照光時間,則染料分子將會垂直吸附於聚合物層中,而當電壓取消後,吸附之染料分子會配向樣品中的液晶,最後形成垂直排列。此外,可利用熱擾動使吸附在聚合物層之染料分子脫附,再照光使脫附的染料分子重新吸附在聚合物層中。我們將此一機制應用於雷射引致強度光柵與液晶顯示器中,並分析該元件之各種光電現象及其成因,由實驗得知,所得之光柵為一振幅光柵;而利用垂直吸附所得之液晶顯示器為一個無需偏振片的液晶顯示器,除此之外,該顯示器可利用電壓控制其開與關、可利用熱擾動將所顯示的圖像抹除、再利用光重新寫入圖像等特性,其總反應時間約為60 ms,且對比度可達到30。

    This thesis investigates the mechanism of light-induced azo dye adsorption in dye-doped polymer-ball-type polymer-dispersed liquid crystal (PBT-PDLC) films. The experimental results show that the dyes are adsorbed onto the UV cured polymer film with their long axes being perpendicular to the substrate surface if an optimized AC voltage is applied during optical-patterning. After the applied voltage is switched off, the adsorbed dyes remain the same alignment, and align the liquid crystals homeotropically in the PBT-PDLC sample. In addition, the dyes adsorbed onto the polymer layer can be desorbed by thermal disturbance, and then be re-adsorbed onto the layer following the optical recording mentioned above. The mechanism is applied to fabricate laser-induced intensity gratings and polarizer-free liquid crystal displays. The electro-optical phenomena and the fabrication processes are analyzed. The results show that the laser-induced grating is an amplitude grating. Besides, the liquid crystal display can be switched by applying a voltage, then erased by a thermal disturbance and rewritten optically. The measured switching time is in the order of milliseconds (~ 60 ms), and the contrast ratio is measured to be about 30.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 第一章 簡介 1 1.1 前言 1 1.2 液晶分類 2 1.2.1 向列型液晶(Nematics,簡稱N) 3 1.2.2 膽固醇型液晶(Cholesterics,簡稱N*) 5 1.2.3 層列型液晶(Smectics,簡稱Sm) 6 1.3 液晶的光電特性 8 1.3.1 液晶的光學異向性 8 1.3.2 外加電場對相列型液晶的影響 11 第二章 相關理論介紹 12 2.1 液晶摻雜染料分子效應 12 2.1.1 光引致染料分子轉向效應 12 2.1.2 吸附效應引致液晶分子排列 16 2.2 聚合過程 17 2.3 雷射引致強度光柵(Laser-Induced Intensity Gratings) 19 第三章 實驗準備 22 3.1 材料介紹 22 3.2 樣品製作 24 3.2.1 藥品配方與製作 24 3.2.2 空液晶盒製作 25 3.2.2 充填材料 26 3.2.3 聚合 27 第四章 實驗原理 28 4.1 PDLC 薄膜之分類 28 4.2 垂直吸附(homeotropic adsorption)之原理 28 第五章 樣品參數與最佳條件之量測 31 5.1 樣品吸收光譜之量測 31 5.1.1 實驗設計 31 5.1.2 實驗結果 32 5.2 聚合所需之最佳時間探討 33 5.2.1 實驗設計 33 5.2.2 實驗結果 33 5.3 聚合後樣品散射態探討 38 5.3.1 實驗設計 38 5.3.2 實驗結果 39 5.4 外加電壓最佳化之量測 40 5.4.1 實驗設計 40 5.4.2 實驗結果 41 5.5 聚合完畢之結構觀察 42 第六章 垂直吸附之相關實驗與討論 44 6.1 垂直吸附所需之光強度量測 44 6.1.1 實驗設計 44 6.1.2 實驗結果 46 6.2 垂直吸附所需之時間測量 48 6.2.1 實驗設計 48 6.2.2 實驗結果 48 6.3 樣品在垂直吸附區域外加電壓之變化 50 6.3.1 實驗設計 50 6.3.2 實驗結果 51 6.4 垂直吸附區域之穿透度與入射光偏振關係 51 6.4.1 實驗設計 51 6.4.2 實驗結果 52 6.5 加熱脫附 53 第七章 染料垂直吸附效應之應用 55 7.1 雷射引致強度光柵 55 7.1.1 實驗設計 56 7.1.2 實驗結果討論 57 7.2 液晶顯示器 67 第八章 結論與未來工作 73 8.1 結論 73 8.2 未來展望 73 8.2.1 Fresnel 液晶透鏡 73 8.2.2 偏振光柵 75 參考文獻 78

    [1] D. Statman, E. Page, V. Werner and J. C. Lombardi, Phys. Rev. E 75, 021703 (2007).
    [2] C.-R. Lee, T.-S. Mo, K.-T. Cheng, T.-L. Fu and Andy Y.-G. Fuh, ppl. Phys. Lett. 83, 4285-4287 (2003).
    [3] O. Francescangeli, S. Slussarenko and F. Simoni, Phys. Rev. Lett. 82,1855-1858 (1999).
    [4] K.-T. Cheng, C.-K. Liu, C.-L. Ting and Andy Y.-G. Fuh, Opt. Express 15, 14078-14085 (2007).
    [5] T.-H. Lin, Y. Huang, Y. Zhou, Andy Y.-G. Fuh and S.-T. Wu, Opt. Express 14, 4479-4485 (2006).
    [6] Andy Y.-G. Fuh, M.-S. Tsai, L.-J. Huang and T.-C. Liu, Appl. Phys. Lett. 74, 2572-2574 (1999).
    [7] Andy Y.-G. Fuh, C.-R. Lee and K.-T. Cheng, Jpn. J. Appl. Phys. 42, 4406-4410 (2003).
    [8] Andy Y.-G. Fuh and T.-S. Mo, Jpn. J. Appl. Phys. 41, 2122-2127 (2002).
    [9] Liquid Crystals, edited by S. Chandrasekhar, F. R. S. (Cambridge University Press, USA, 1992).
    [10] The Physics of Liquid Crystals, edited by P. G. de Gennes and J. Prost (Oxford University Press, New York, 1993).
    [11] Liquid Crystals, edited by S. Chandrasekhar, F. R. S. (Cambridge University Press, USA, 1992).
    [12] 松本正一、角田市良 合著, 劉瑞祥 譯, 液晶之基礎與應用,國立編譯館出版(1996).
    [13] 朱自強,王仕璠,蘇顯渝, 現代光學教程, 四川大學出版社, 成都(1990).
    [14] I. Jánossy and A.D. Lloyd, Mol. Cryst. Liq. Cryst. 203, 74 (1991).
    [15] I. Jánossy, Phys. Rev. E, 49, 2957 (1994).
    [16] W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon and S. T. Sun, Nature, 337, 43 (1995).
    [17] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, Nature, 351, 49 (1991).
    [18] H. Hervel, W. Urbach, and F. Rondelez, J. Chem. Phys., 68, 2725 (1978).
    [19] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, Langmuir, 4, 1214 (1998).
    [20] F. Simoni, O. Francescangeli, Y. Reznikov, S. Slussarenko, Opt. Lett., 22, 549 (1997).
    [21] Andy Y.-G. Fuh, C.-C. Liao, C.-Y. Tasi, and C.-L Lu, Opt. Lett., 26, 447 (2001).
    [22] Andy Y.-G. Fuh, C.-C. Liao, K.-C. Hsu, and C.-L Lu, Opt. Lett., 28, 1179 (2003).
    [23] Andy Y.-G. Fuh, C.-R. Lee, T.-L. Fu, K.-T. Cheng, and T.-S. Mo, Phys, Rev. E, 69, 031704 (2004).
    [24] Laser – Induced Dynamics Gratings, edited by H. J. Eicher, P. Günter and D. W. Pohl (Springer – Verlag, Berlin, 1986).
    [25] J. W. Doane, N. A. Vaz, B.-G. Wu and S. Zumer, Appl. Phys. Lett. 48, 269-271 (1986).
    [26] R. Yamaguchi and S. Sato, Jpn. J. Appl. Phys. 30, L616-L618 (1991).
    [27] T. Qian, J.-H. Kim, S. Kumar and P. L. Taylor, Phys. Rev. E 61, 4007-4010 (2000).
    [28] Q. Wang, Jung O. Park, M. Srinivasarao, L. Qiu and S. Kumar, Jpn. J. Appl. Phys. 44, 3115-3120 (2005).
    [29] P.S. Drzaic , Liquid Crystal Dispersions , World Scientific Press, Singarpore (1990).

    下載圖示 校內:2009-08-06公開
    校外:2009-08-06公開
    QR CODE