| 研究生: |
張家盛 Chang, Chia-Sheng |
|---|---|
| 論文名稱: |
演化演算法於多跨鋼拱橋之有限元模型更新 Evolutionary Algorithm Based Finite Element Model Updating of Multi-Span Steel Arch Bridges |
| 指導教授: |
侯琮欽
Hou, Tsung-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 169 |
| 中文關鍵詞: | 工作模態分析 、有限元模型更新 、結構健康檢測 、環境微振 、基因演算法 |
| 外文關鍵詞: | Operational Modal Analysis, Finite Element Model Updating, Structure Health Monitoring, Ambient Vibration, Genetic Algorithm |
| 相關次數: | 點閱:112 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於台灣所處之地理位置特殊,颱風、地震等自然災害頻仍,在台灣因颱風夾帶豪大雨導致溪水暴漲進而沖毀橋梁的事件屢見不鮮,因地震導致橋體受損的案例亦不勝枚舉,而其所造成的直接與間接損失更是難以估計,因此為確保橋梁結構在營運階段的安全性、耐久性與服務性,須建立一套完善之橋梁健康監測系統及預測模型,以便未來對橋梁性能進行評估,及作為後續橋梁修繕與補強之依據。本研究係以高雄市甲仙區之甲仙大橋為研究目標,橋梁結構為三跨鋼拱橋,為甲仙區對外聯繫之要道,研究主要目的為建立甲仙大橋有限元預測模型,首先依照設計圖說利用MIDAS Civil 2010建立橋梁初始有限元模型,隨後以現地橋梁微振量測結果為依據,透過工作模態分析實驗以及選用峰值挑選法、頻率域分解法、協方差型隨機子空間識別法作為分析橋梁模態參數之工具,藉由交互驗證模態參數識別結果來決定橋梁的動態特性,隨後以識別出之模態頻率與振形作為模型更新基準,研究中選擇基因演算法對所選之模型參數進行最佳化調整,考慮溫度對環境微振之影響,並於模型更新時對各參數予以綜合群組化,以期工作模態之結構動態參數能與有限元模型達成高度契合。模型校正完成後,便能據以預測實際結構於各種災害—例如地震、颱風、暴雨、衝擊載重、土石流與河床沖刷等情境下其結構行為與殘餘性能之依據。研究結果顯示,三種模態參數識別方法其分析結果具有良好的一致性,而基因演算法於參數更新之收斂上能提供良好的穩定性,適用於橋梁結構參數更新,且更新後之有限元模型能提供數個與工作模態分析結果相當接近之低頻高能模態頻率與振形,顯示基因演算法適用於本研究類型之橋梁有限元模型更新。
In the public construction, bridge structures play an important role of the transportation network. At present, they are facing some serious problems such as the aging of the infrastructure, excessive loading, river scouring and natural disasters. These factors may lead to the bridge components fail. To assurance the safety, durability, and serviceability condition during bridge operation, it is necessary to establish a comprehensive system of bridge health monitoring and a bridge baseline model. This paper presents the implementation of the finite-element model updating for the Jia-Sian Bridge, a multi-span steel arch bridge in Taiwan, Kaohsiung. First, the dynamic characteristics of the bridge have been estimate through field ambient vibration testing. Using the peak-picking method (PP), frequency domain decomposition method (FDD), and covariance-driven stochastic subspace identification method (SSI-COV), experimental modal properties of the bridge are found. Then the bridge initial finite element model built in accordance with the design drawings. When a finite element model was created, it is updated based on the field measured dynamic properties. The model parameters including the stiffness of joints and material parameters are updated using the genetic algorithm (GA) by minimizing the differences between the predicted and the measured modal frequencies. After model updating, the model can represent the structure, allowing for damage detection. Moreover, it can also predict the bridge behavior before a catastrophe happens. Results show that the three modal parameter identification methods have good agreement for identifying Jia-Sian Bridge modal properties. The optimization algorithm also works well and has good stability in the updating parameters convergence.
1. 張國鎮, "談橋梁工程防災之趨勢與展望," 中華技術, vol. 89, pp. 6-13, 2011.
2. 財團法人台灣營建研究院, "高速公路橋梁延壽評估及案例分析委託研究計畫," 2004.
3. 高維遠, "多跨橋樑動態特徵之有限元素模型更新," 國立成功大學, 2015.
4. 傅志方 and 华宏星, 模态分析理论与应用: 上海交通大学出版社, 2000.
5. 马永列, "结构模态分析实现方法的研究," 机械与能源学院, 浙江大学, 2008.
6. 秦志昌, "模态分析在故障诊断和状态监测中的应用," 山东科技大学, 2011.
7. 梁君 and 赵登峰, "工作模態分析理論研究現狀与發展," 电子机械工程, vol. 22, 2006.
8. 黃進國, "梁結構損傷偵測," 國立中央大學, 1999.
9. 刘宇飞, 辛克贵, 樊健生, and 崔定宇, "环境激励下结构模态参数识别方法综述," 工程力学, vol. 31, 2014.
10. J. He and Z.-F. Fu, Modal Analysis vol. 1: Reed Educational and Professional Publishing Ltd, 2001.
11. 任伟新, "环境振动系统识别方法的比较分析," 福州大学学报(自然科学版), vol. 29, 2001.
12. R. Brincker, L. Zhang, and P. Andersen, "Modal identification from ambient responses using frequency domain decomposition," presented at the Proceedings of the International Modal Analysis Conference (IMAC), 2000.
13. N. M. M. Maia, Theoretical and Experimental Modal Analysis. Baldock, United Kingdom: Research Studies Press, 2003.
14. P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems, 1 ed.: Springer US, 1996.
15. A. Cunha, E. Caetano, and R. Delgado, "Dynamic tests on large cable-stayed bridge," Journal of Bridge Engineering, vol. 6, pp. 54-62, 2001.
16. F. Benedettini and C. Gentile, "Operational modal testing and FE model tuning of a cable-stayed bridge," Engineering Structures, vol. 33, pp. 2063-2073, 2011.
17. A. C. Altunişik, A. Bayraktar, B. Sevim, and H. Özdemir, "Experimental and analytical system identification of Eynel arch type steel highway bridge," Journal of Constructional Steel Research, vol. 67, pp. 1912-1921, 2011.
18. L. X. Wang and S. K. Di, "Modal parameter identification of concrete filled steel tube arch bridge based on stochastic subspace method," Advanced Materials Research, vol. 919-921, pp. 325-328, 2014.
19. R. Lauzon and J. DeWolf, "Ambient vibration monitoring of a highway bridge undergoing a destructive test," Journal of Bridge Engineering, vol. 11, pp. 602-610, 2006.
20. L. Zhang, T. Wang, and Y. Tamura, "A frequency–spatial domain decomposition (FSDD) method for operational modal analysis," Mechanical Systems and Signal Processing, vol. 24, pp. 1227-1239, 2010.
21. M. Tomizuka, L. Wang, B. Li, J. Hou, and J. Ou, "Modal analysis of Dongying Yellow River Bridge for long term monitoring," Proc. of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011, vol. 7981, p. 79811Z, 2011.
22. D. M. Siringoringo and Y. Fujino, "Observed alongwind vibration of a suspension bridge tower and girder," Procedia Engineering, vol. 14, pp. 2358-2365, 2011.
23. Y. Li, Z. Guo, and H. Wei, "Application of piezoelectricity acceleration sensor to dynamic characteristics monitoring of tied arch bridge," Applied Mechanics and Materials, vol. 184-185, pp. 715-718, 2012.
24. R. Salgado, J. M. Branco, P. J. S. Cruz, and G. Ayala, "Serviceability assessment of the Góis footbridge using vibration monitoring," Case Studies in Nondestructive Testing and Evaluation, vol. 2, pp. 71-76, 2014.
25. W. Ecke, M. J. Whelan, K. J. Peters, M. V. Gangone, K. D. Janoyan, and T. E. Matikas, "Effect of sensor placement on operational modal analysis of steel girder bridges," vol. 7982, p. 79820L, 2011.
26. F. Magalhães, E. Caetano, and Á. Cunha, "Operational modal analysis and finite element model correlation of the Braga Stadium suspended roof," Engineering Structures, vol. 30, pp. 1688-1698, 2008.
27. Q. Fei, A. Li, X. Han, and C. Miao, "Modal identification of long-span Runyang Bridge using ambient responses recorded by SHMS," Science in China Series E: Technological Sciences, vol. 52, pp. 3632-3639, 2009.
28. J. M. W. Brownjohn, F. Magalhaes, E. Caetano, and A. Cunha, "Ambient vibration re-testing and operational modal analysis of the Humber Bridge," Engineering Structures, vol. 32, pp. 2003-2018, 2010.
29. M. Tomizuka, C. H. Loh, M. C. Chen, S. H. Chao, C. B. Yun, and J. P. Lynch, "Stochastic subspace identification for operational modal analysis of an arch bridge," Proc. of SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012, vol. 8345, pp. 834504-834504-12, 2012.
30. H. Jiang, G. W. Meng, and H. K. Zhang, "Research on modal identification method of pre-stressed concrete bridge," Applied Mechanics and Materials, vol. 405-408, pp. 1651-1654, 2013.
31. D. Ribeiro, R. Calçada, R. Delgado, M. Brehm, and V. Zabel, "Finite element model updating of a bowstring-arch railway bridge based on experimental modal parameters," Engineering Structures, vol. 40, pp. 413-435, 2012.
32. B. Jaishi, H.-J. Kim, M. K. Kim, W.-X. Ren, and S.-H. Lee, "Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility," Mechanical Systems and Signal Processing, vol. 21, pp. 2406-2426, 2007.
33. Y. B. Yang and Y. J. Chen, "A new direct method for updating structural models based on measured modal data," Engineering Structures, vol. 31, pp. 32-42, 2009.
34. A. Teughels, G. De Roeck, and J. A. K. Suykens, "Global optimization by coupled local minimizers and its application to FE model updating," Computers & Structures, vol. 81, pp. 2337-2351, 2003.
35. T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms: Oxford University Press Oxford, UK, 1996.
36. J. H. Holland, Adaptation in Natural and Artificial Systems. MA, USA: University of Michigan Press, 1975.
37. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Boston, MA, USA Addison-Wesley Longman Publishing Co., Inc. , 1989.
38. 張巍贏, "桁架結構最佳化設計使用基因演算法與窄化空間技術," 國立交通大學, 2007.
39. M. I. Friswell and J. E. Mottershead, Finite Element Model Updating in Structural Dynamics: Springer Netherlands, 1995.
40. M. Brehm, "Vibration-based model updating:Reduction and quantification of uncertainties," Bauhaus University, Weimar, 2011.
41. Q. Zhang, T. Chang, and C. Chang, "Finite-element model updating for the Kap Shui Mun Cable-Stayed Bridge," Journal of Bridge Engineering, vol. 6, pp. 285-293, 2001.
42. D. GÖGe and M. Link, "Results obtained by minimizing natural frequency and mode shape errors of a beam model," Mechanical Systems and Signal Processing, vol. 17, pp. 21-27, 2003.
43. B. Jaishi and W.-X. Ren, "Damage detection by finite element model updating using modal flexibility residual," Journal of Sound and Vibration, vol. 290, pp. 369-387, 2006.
44. A. Patjawit and W. Kanok-Nukulchai, "Health monitoring of highway bridges based on a global flexibility index," Engineering Structures, vol. 27, pp. 1385-1391, 2005.
45. B. Jaishi and W. Ren, "Structural finite element model updating using ambient vibration test results," Journal of Structural Engineering, vol. 131, pp. 617-628, 2005.
46. Z. Zong, X. Lin, and J. Niu, "Finite element model validation of bridge based on structural health monitoring—Part I: Response surface-based finite element model updating," Journal of Traffic and Transportation Engineering (English Edition), vol. 2, pp. 258-278, 2015.
47. R. Cantieni, M. Brehm, V. Zabel, T. Rauert, and B. Hoffmeister, "Ambient testing and model updating of a filler beam bridge for high-speed trains," presented at the 7th European Conference on Structural Dynamics, 2008.
48. L. Deng and C. Cai, "Bridge model updating using response surface method and genetic algorithm," Journal of Bridge Engineering, vol. 15, pp. 553-564, 2010.
49. R. I. Levin and N. A. J. Lieven, "Dynamic finite element model updating using simulated annealing and genetic algorithms," Mechanical Systems and Signal Processing, vol. 12, pp. 91-120, 1998.
50. T. Marwala, "Finite element model updating using response-surface method," presented at the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, 2004.
51. M. Feng, D. Kim, J. Yi, and Y. Chen, "Baseline models for bridge performance monitoring," Journal of Engineering Mechanics, vol. 130, pp. 562-569, 2004.
52. B. Gou, W. Zhang, Q. Lu, and B. Wang, "A successive selection method for finite element model updating," Mechanical Systems and Signal Processing, vol. 70-71, pp. 320-333, 2016.
53. C. R. Farrar, S. W. Doebling, and D. A. Nix, "Vibration-based structural damage identification," The Royal Society, vol. 359, pp. 131-149, 2001.
54. Z. X. Li, B. J. Wu, and Y. Wang, "Statistical analyses on multi-scale features of monitoring data from health monitoring system in long cable supported bridges," Procedia Engineering, vol. 1, pp. 123-127, 2009.
55. M. L. Ma, G. L. Wang, D. M. Miao, and B. Y. Lian, "Structure health monitoring system of a noval steel-free cable stayed bridge," Applied Mechanics and Materials, vol. 275-277, pp. 1321-1325, 2013.
56. J. M. Zhao, J. Y. Zhang, and Y. L. Wang, "Stress monitor and control in cantilever construction of a continuous bridge," Advanced Materials Research, vol. 671-674, pp. 2063-2066, 2013.
57. Y. F. Duan, Y. Li, and Y. Q. Xiang, "Strain-temperature correlation analysis of a tied arch bridge using monitoring data " presented at the International Conference on Multimedia Technology, Hangzhou, 2011.
58. J. Leng, S. Li, A. K. Asundi, H. Li, J. Ou, W. Ecke, et al., "Reliability assessment of long span bridges based on structural health monitoring: application to Yonghe Bridge," vol. 7493, p. 74933B, 2009.
59. K. J. Peters, M. V. Gangone, M. J. Whelan, M. P. Fuchs, and K. D. Janoyan, "Performance monitoring of a short-span integral-abutment bridge using wireless sensor technology," vol. 6530, p. 65300R, 2007.
60. J. Fu, Y. Qin, X. H. Yu, Y. Chen, and X. T. Shi, "Analysis of bridge health monitoring system for Hongfenghu Bridge based on limited sensors," Applied Mechanics and Materials, vol. 193-194, pp. 1247-1252, 2012.
61. S. Sumitro, Y. Matsuia, M. Kono, T. Okamotoa, and K. Fujii, "Long span bridge health monitoring system in Japan," Health Monitoring and Management of Civil Infrastructure Systems, vol. 4337, 2001.
62. S. Gade, N. Møller, H. Herlufsen, and H. Konstantin-Hansen, "Frequency domain techniques for operational modal analysis," presented at the IMAC-XXIV Conference and Exposition on Structural Dynamics, 2006.
63. G. Lindfield, J. Penny, and 黃俊銘(編譯), 數值方法─使用MATLAB程式語言第二版: 全華圖書股份有限公司 2001.
64. 林豐澤, "演化式計算下篇:基因演算法以及三種應用實例," 文化大學, 2005.
65. K. F. Man, K. S. Tang, and S. Kwong, Genetic Aigorithms:Concepts and Designs, 3 ed.: Springer-Verlag London Ltd., 2001.
66. A. Wetzel, "Evaluation of the Effectiveness of Genetic Algorithms in Combinatorial Optimization," University of Pittsburgh, 1983.
校內:2021-07-31公開