| 研究生: |
葉佳妤 Yeh, Chia-Yu |
|---|---|
| 論文名稱: |
新生早期暴露Dexamethasone對於往後因
缺血缺氧所引發之白質腦傷之影響 Neonatal Dexamethasone Exposure on Hypoxia- Ischemia-Induced White Matter Injury |
| 指導教授: |
許桂森
Hsu, Kuei-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 新生 DEX 之投予 、缺血缺氧引發之大腦白質病變 、寡突細胞之發展 、腦性麻痺 |
| 外文關鍵詞: | neonatal DEX treatment, hypoxia-ischemia-induced white matter injury, oligodendrocyte development, cerebral palsy |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Dexamethasone (DEX) 是一種人工合成的醣皮質類固醇,被廣泛用於促進早產兒肺泡內的表面張力素之生成以及肺部發育之成熟,進而降低早產兒慢性肺疾病發生率及死亡率。通常給予 DEX 治療的時間為新生兒腦部發育的重要時期,愈來愈多的研究顯示新生給予 DEX 作治療會影響新生兒腦部的生長與發育且會影響其往後的神經發展,並可能增加罹患腦性麻痺 (cerebral palsy, CP) 的風險,因此對於類固醇用於早產兒治療對這些早產兒的安全性以及長期發展的影響也有愈來愈多人關注。儘管新生早期給予 DEX 對於治療與預防慢性肺疾病有很大的幫助,早產兒還是可能因為多重器官發育不全而面臨到缺血-缺氧的情況而使得腦部遭受嚴重傷害,尤其是大腦白質病變 (white matter injury, WMI)。具大腦白質病變的早產兒有 10–15% 在往後會發展成為腦性麻痺,而有 50% 可能會有認知及行為的缺損。然而,關於新生暴露 DEX 對往後因遭遇缺血-缺氧而引起的白質腦傷有何影響目前仍不清楚。因此,這個研究的主要目的是去探討新生暴露 DEX 是否會影響往後因缺血-缺氧而引起之白質腦傷並探討 DEX 影響因缺血-缺氧而引起之白質腦傷可能的因素。我們利用在大鼠P1-P3間給予遞減劑量的 DEX 來模擬臨床上早產兒的類固醇治療,並在P7進行缺血-缺氧的處理。我們發現新生暴露 DEX 會延遲大腦白質區域的發育、降低寡突細胞族群 (oligodendrocyte population) 數量以及加重往後因缺血-缺氧所造成的大腦白質區域 (包含 cingulum 和 external capsule) 髓鞘蛋白 MBP、 MAG、 MOG、 PLP 的缺損。我們還發現新生暴露 DEX 會加重往後因缺血-缺氧所造成的大腦白質區域 GFAP 表現量上升與微小膠細胞 (microglia) 的活化。除此之外,我們還發現新生暴露 DEX 會加重往後因缺血-缺氧而引起的腦性麻痺相關運動功能失調至少到3週且會破壞至少到5週 corpus callosum 正常的神經傳導。綜合以上結果顯示,早期使用 DEX 治療的方式可能會因為延遲 oligodendrocytes 的生長與發育而加重往後遭遇缺血-缺氧所引起之白質腦傷。
The synthetic glucocorticoid dexamethasone (DEX) has been widely used to prevent or lessen the morbidity of chronic lung disease (CLD) by facilitating surfactant synthesis in pulmonary alveolus in preterm infants. Typically, DEX were administered during a period of life that is critical for the development of the infant brain. There is growing evidence that postnatal DEX therapy will adversely affect the growth and development of the immature brain and is often associated with neurodevelopmental impairment and an increased risk of cerebral palsy. Therefore, growing concern has arisen for the long-term safety of this therapy on the brain development of the child. Although DEX treatment is a powerful way for the prevention and improvement of CLD, but preterm infants are still under the risk of encountering hypoxia-ischemia (HI) condition. Hypoxic–ischemic brain injury in the preterm infant appears selective for white matter, and 10–15% of preterm infants who have suffer from white matter injury subsequently exhibit cerebral palsy, and 50% have cognitive and behavioral deficits. However, the effect of neonatal DEX exposure on HI-induced white matter injury remains unknown. Thus, the objective of this proposal is to investigate the impact of neonatal DEX treatment on HI-induced white matter damage and characterize the possible underlying causes. Using a HI model of premature brain injury, we found that a 3-day tapering course (0.5, 0.3 and 0.1 mg/kg) of DEX treatment in rat pups on postnatal days 1–3 (P1-3) delayed whiter matter development, reduced oligodendrocyte population number and exacerbated HI-induced loss of myelin protein involving MBP, MAG, MOG, PLP in tissues of whiter matter, including cingulum and external capsule. We also found that neonatal DEX treatment exacerbates HI-induced increase in glial fibrillary acidic protein (GFAP) protein expression in the external capsule. In addition, neonatal DEX treatment exacerbates HI-induced microglia activation. Moreover, neonatal DEX treatment exacerbated HI-induced developmental motor deficits before 3-week-old and broken normal neuronal conduction in corpus callosum until 5-week-old. These results revealed that early DEX exposure influence oligodendrocyte lineage growth and delay white matter development and may lead the neonatal brain to be more vulnerable to subsequent HI–induced white matter injury.
Allin MP, Kontis D, Walshe M, Wyatt J, Barker GJ, Kanaan RA, McGuire P, Rifkin L, Murray RM, Nosarti C (2011) White matter and cognition in adults who were born preterm. PLoS One 6:e24525.
Aloisi F (2001) Immune function of microglia. Glia 36:165-179.
Alonso G (2000) Prolonged corticosterone treatment of adult rats inhibits the proliferation of oligodendrocyte progenitors present throughout white and gray matter regions of the brain. Glia 31:219-231.
Avery ME, Mead J (1959) Surface properties in relation to atelectasis and hyaline membrane disease. AMA J Dis Child 97:517-523.
Back SA (2006) Perinatal white matter injury: the changing spectrum of pathology and emerging insights into pathogenetic mechanisms. Ment Retard Dev Disabil Res Rev 12:129-140.
Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ (1998) Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 18:6241-6253.
Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC (2001) Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 21:1302-1312.
Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455-463.
Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871-927.
Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ (2002) Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA 288:728-737.
Bifano EM, Smith F, Borer J (1992) Relationship between determinants of oxygen delivery and respiratory abnormalities in preterm infants with anemia. J Pediatr 120:292-296.
Biran V, Joly LM, Heron A, Vernet A, Vega C, Mariani J, Renolleau S, Charriaut-Marlangue C (2006) Glial activation in white matter following ischemia in the neonatal P7 rat brain. Exp Neurol 199:103-112.
Blomgren K (1999) Calpastatin is upregulated and acts as a suicide substrate to calpains in neonatal rat hypoxia-ischemia. Ann N Y Acad Sci 890:270-271.
Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119:37-53.
Chang KH, Yeh CM, Yeh CY, Huang CC, Hsu KS (2013) Neonatal dexamethasone treatment exacerbates hypoxic-ischemic brain injury. Mol Brain 6:18.
Cheong JL, Thompson DK, Wang HX, Hunt RW, Anderson PJ, Inder TE, Doyle LW (2009) Abnormal white matter signal on MR imaging is related to abnormal tissue microstructure. AJNR Am J Neuroradiol 30:623-628.
Committee on F, Newborn (2002) Postnatal corticosteroids to treat or prevent chronic lung disease in preterm infants. Pediatrics 109:330-338.
Craig A, Ling Luo N, Beardsley DJ, Wingate-Pearse N, Walker DW, Hohimer AR, Back SA (2003) Quantitative analysis of perinatal rodent oligodendrocyte lineage progression and its correlation with human. Exp Neurol 181:231-240.
Dambska M, Laure-Kamionowska M, Schmidt-Sidor B (1989) Early and late neuropathological changes in perinatal white matter damage. J Child Neurol 4:291-298.
Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680-683.
Deng W, Pleasure J, Pleasure D (2008) Progress in periventricular leukomalacia. Arch Neurol 65:1291-1295.
Derrick M, Drobyshevsky A, Ji X, Tan S (2007) A model of cerebral palsy from fetal hypoxia-ischemia. Stroke 38:731-735.
Derrick M, Luo NL, Bregman JC, Jilling T, Ji X, Fisher K, Gladson CL, Beardsley DJ, Murdoch G, Back SA, Tan S (2004) Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J Neurosci 24:24-34.
Distelhorst CW (2002) Recent insights into the mechanism of glucocorticosteroid-induced apoptosis. Cell Death Differ 9:6-19.
Flagel SB, Vazquez DM, Watson SJ, Jr., Neal CR, Jr. (2002) Effects of tapering neonatal dexamethasone on rat growth, neurodevelopment, and stress response. Am J Physiol Regul Integr Comp Physiol 282:R55-63.
Follett PL, Rosenberg PA, Volpe JJ, Jensen FE (2000) NBQX attenuates excitotoxic injury in developing white matter. J Neurosci 20:9235-9241.
Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, Volpe JJ, Jensen FE (2004) Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci 24:4412-4420.
Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Brain Res Rev 20:269-287.
Gilbert C (2008) Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum Dev 84:77-82.
Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE (1996) Overexpression of 2',3'-cyclic nucleotide 3'-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci 7:453-466.
Gu C, Casaccia-Bonnefil P, Srinivasan A, Chao MV (1999) Oligodendrocyte apoptosis mediated by caspase activation. J Neurosci 19:3043-3049.
Halliday HL, Ehrenkranz RA (2000) Delayed (>3 weeks) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev:CD001145.
Itoh T, Beesley J, Itoh A, Cohen AS, Kavanaugh B, Coulter DA, Grinspan JB, Pleasure D (2002) AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes. J Neurochem 81:390-402.
Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779-789.
Kamphuis PJ, Gardoni F, Kamal A, Croiset G, Bakker JM, Cattabeni F, Gispen WH, van Bel F, Di Luca M, Wiegant VM (2003) Long-lasting effects of neonatal dexamethasone treatment on spatial learning and hippocampal synaptic plasticity: involvement of the NMDA receptor complex. FASEB J 17:911-913.
Keirstead HS, Blakemore WF (1999) The role of oligodendrocytes and oligodendrocyte progenitors in CNS remyelination. Adv Exp Med Biol 468:183-197.
Khwaja O, Volpe JJ (2008) Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93:F153-161.
Kim JW, Kim YJ, Chang YP (2013) Administration of dexamethasone to neonatal rats induces hypomyelination and changes in the morphology of oligodendrocyte precursors. Comp Med 63:48-54.
Kinnala A, Ekblad H, Kero P, Erkkola R (1994) Hypoglycemia is common in preterm infants in intensive care. Ann Chir Gynaecol Suppl 208:103-105.
Laptook AR, Salhab W, Bhaskar B, Neonatal Research N (2007) Admission temperature of low birth weight infants: predictors and associated morbidities. Pediatrics 119:e643-649.
Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405-415.
Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, Verter J, Temprosa M, Wright LL, Ehrenkranz RA, Fanaroff AA, Stark A, Carlo W, Tyson JE, Donovan EF, Shankaran S, Stevenson DK (2001) Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107:E1.
Levison SW, Young GM, Goldman JE (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J Neurosci Res 57:435-446.
Li L et al. (2008) Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab 28:468-481.
Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50:515-525.
Liu Y, Silverstein FS, Skoff R, Barks JD (2002) Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51:25-33.
Lynex CN, Carr IM, Leek JP, Achuthan R, Mitchell S, Maher ER, Woods CG, Bonthon DT, Markham AF (2004) Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. BMC Neurol 4:20.
Mandai K, Matsumoto M, Kitagawa K, Matsushita K, Ohtsuki T, Mabuchi T, Colman DR, Kamada T, Yanagihara T (1997) Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia. Neuroscience 77:849-861.
Martin RJ, Fanaroff AA (2013) The preterm lung and airway: past, present, and future. Pediatr Neonatol 54:228-234.
McIntyre S, Taitz D, Keogh J, Goldsmith S, Badawi N, Blair E (2013) A systematic review of risk factors for cerebral palsy in children born at term in developed countries. Dev Med Child Neurol 55:499-508.
Nakajima K, Kohsaka S (2001) Microglia: activation and their significance in the central nervous system. J Biochem 130:169-175.
O'Shea TM, Kothadia JM, Klinepeter KL, Goldstein DJ, Jackson BG, Weaver RG, 3rd, Dillard RG (1999) Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: outcome of study participants at 1-year adjusted age. Pediatrics 104:15-21.
Ong WY, Leong SK, Garey LJ, Reynolds R (1996) A light- and electron-microscopic study of GluR4-positive cells in cerebral cortex, subcortical white matter and corpus callosum of neonatal, immature and adult rats. Exp Brain Res 110:367-378.
Parvathy TC, Varma KK (1982) Necrotizing enteritis in children. Part II. Pathology and pathogenesis. Indian Pediatr 19:525-532.
Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968-980.
Powell K, Kerkering KW, Barker G, Rozycki HJ (2006) Dexamethasone dosing, mechanical ventilation and the risk of cerebral palsy. J Matern Fetal Neonatal Med 19:43-48.
Pun PB, Lu J, Moochhala S (2009) Involvement of ROS in BBB dysfunction. Free Radic Res 43:348-364.
Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429-439.
Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, Dan B, Jacobsson B (2007) A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl 109:8-14.
Rosenberg PA, Dai W, Gan XD, Ali S, Fu J, Back SA, Sanchez RM, Segal MM, Follett PL, Jensen FE, Volpe JJ (2003) Mature myelin basic protein-expressing oligodendrocytes are insensitive to kainate toxicity. J Neurosci Res 71:237-245.
Scafidi J, Fagel DM, Ment LR, Vaccarino FM (2009) Modeling premature brain injury and recovery. Int J Dev Neurosci 27:863-871.
Schmidt B, Asztalos EV, Roberts RS, Robertson CM, Sauve RS, Whitfield MF, Trial of Indomethacin Prophylaxis in Preterms I (2003) Impact of bronchopulmonary dysplasia, brain injury, and severe retinopathy on the outcome of extremely low-birth-weight infants at 18 months: results from the trial of indomethacin prophylaxis in preterms. JAMA 289:1124-1129.
Shinwell ES, Karplus M, Reich D, Weintraub Z, Blazer S, Bader D, Yurman S, Dolfin T, Kogan A, Dollberg S, Arbel E, Goldberg M, Gur I, Naor N, Sirota L, Mogilner S, Zaritsky A, Barak M, Gottfried E (2000) Early postnatal dexamethasone treatment and increased incidence of cerebral palsy. Arch Dis Child Fetal Neonatal Ed 83:F177-181.
Skoff RP, Bessert DA, Barks JD, Song D, Cerghet M, Silverstein FS (2001) Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice. Int J Dev Neurosci 19:197-208.
Stence N, Waite M, Dailey ME (2001) Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices. Glia 33:256-266.
Tzarouchi LC, Astrakas LG, Zikou A, Xydis V, Kosta P, Andronikou S, Argyropoulou MI (2009) Periventricular leukomalacia in preterm children: assessment of grey and white matter and cerebrospinal fluid changes by MRI. Pediatr Radiol 39:1327-1332.
Udaeta-Mora E, Felix I, Segura-Roldan MA, Lozano-Gonzalez CH (1982) [Ultrasonic diagnosis of intracranial hemorrhage in preterm newborn infants]. Bol Med Hosp Infant Mex 39:812-819.
Vicedomini JP, Nonneman AJ, DeKosky ST, Scheff SW (1986) Perinatal glucocorticoids disrupt learning: a sexually dimorphic response. Physiol Behav 36:145-149.
Volpe JJ (2001) Neurobiology of periventricular leukomalacia in the premature infant. Pediatr Res 50:553-562.
Volpe JJ (2009) Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol 8:110-124.
Vyas J, Kotecha S (1997) Effects of antenatal and postnatal corticosteroids on the preterm lung. Arch Dis Child Fetal Neonatal Ed 77:F147-150.