| 研究生: |
傅泀翰 Fu, Szu-Han |
|---|---|
| 論文名稱: |
以改質光觸媒處理二氯甲烷之研究 Photocatalytic Destruction of Dichloromethane by Modified Photocatalyst |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 光觸媒 、二氯甲烷 |
| 外文關鍵詞: | Photocatalyst, Dichloromethane |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以溶膠凝膠法製備TiO2光觸媒及改質後的Fe/TiO2光觸媒來處理二氯甲烷,發現經過393 K烘乾24小時後的光觸媒,隨著Fe:Ti比例的增加光催化活性有下降的趨勢,尤其是當Fe/Ti大於0.5 mol%之後,光催化的活性更是有明顯的下降。而比較723 K鍛燒4小時後的Fe/Ti=0.005 mol%及TiO2光觸媒,Fe/Ti=0.005 mol%光觸媒對於二氯甲烷有較佳的催化能力。而經由FTIR對光觸媒在鍛燒前後產物的分析,推測未鍛燒的光觸媒中,NO3-可能會參與光催化的反應使得FTIR的分析中有觀察到含氮的化合物,而在鍛燒後的光觸媒則沒有此一現象,此外經由Cl2分析儀的分析發現在無水氣的情況下,以光觸媒處理二氯甲烷會有氯氣產生。
由BET表面積及孔洞的分析,推測可能是因為硝酸鐵會填塞光觸媒的孔洞,使得表面積下降導致活性下降,經由XRD與TGA的分析發現,隨著Fe:Ti比例的增加anatase及rutile形成的溫度點也隨之降低,而Fe/Ti=5 mol%光觸媒在經過高溫鍛燒可能會有Fe2TiO5的晶相產生;經由393 K 烘乾24小時後的光觸媒之UV-Visible的分析發現Fe/TiO2光觸媒於可見光部分的吸光是由硝酸鐵所造成並沒有光催化的功能,而經過723 K鍛燒4小時之後的Fe/TiO2光觸媒,發現其UV-Visible的吸收光譜有往長波偏移的現象。
In this study, we decompose the dichloromethane over The TiO2 and modified-Fe/TiO2 photocatalysts prepared by the sol-gel methods. We found that the photoactivity of the photocatalysts dried at 393 K for 24 hrs decrease with the ratio of Fe/Ti. The efficiency of the photocatalyst dropped significantly while the ratio of Fe/Ti was over 0.5 mol %. After calcining at 723 K for 4 hrs, the photocatalyst Fe/Ti=0.0005 mol% showed the higher photoactivity for the dichloromethane decomposition than that of TiO2.
The nitrogen-containedompound was detected through a FTIR in the case of the uncalcined photocatalyst. On the basis of this result, it was thought that the NO3- may act as the media to partake the photocatalytic reaction. No nitrogen-contained compounds were detected for the calcined photocatalyst in the FTIR patterns. Additionally, a significant amount of Cl2 gas was analyzed by a Cl2-analyzer during the photocatalytic experiment while no water was fed into the influent gases.
From the BET analysis, the surface area of the uncalcined photocatalyst decreased significantly. This may be due to that FeNO3•9H2O occupied the pores in the photocatalyst and cause low conversion. The formation temperatures of the anatase and rutile decreased with the ratio of Fe/Ti through the XRD and TGA analysis.
For the Fe/Ti=5 mol% photocatalysts, Fe2TiO5 may form at a high calcining temperature. After 24 hrs dried at 393K, the UV-Visible analysis indicated that the distinct absorption region was within the visible-wavelength and was attributed to FeNO3•9H2O, which is low/no photoactivity. However, after 4 hrs calcined at 723 K, the Fe/TiO2 photocatalysts resulted in a definite shift in the absorption spectra toward visible light regions.
In this study, we found the photoactivity decreased at high calcining temperatures and the presence of water resulted in decreasing conversion.
Amy, L.; Linsebigler, Guangquan Lu,; John T.;Yates, Jr. Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected
Results. Chemical Revies. 1995, 95, 735-758
Bonamali, P.; Maheshwar Sharonb.; Gyoichi Nogami. Preparation and characterization of TiO2/Fe2O3 binary ixed oxides and its photocatalytic properties. Materials Chemistry and Physics. 1999, 59, 254-261.
Bandara, J.; Mielczarski, J. A.; Lopez, A.; Kiwi J. Sensitized degradation of chlorophenols on iron oxides induced by visible light Comparison with titanium oxide. Applied Catalysis B: Environmental.2001 , 34, 321-333.
Baoshu, C.; Chuansheng, Bai. ;Ronald Cook.; John Wright.; Cynthia Wang. Gold-cobalt oxide catalysts for oxidative destruction of dichloromethane.Catalysis Today,1996, 30,15-20.
Cot, F.;Larbot, A.; Nabias G.;Cot, L. Preparation and characterization of colloidal solution derived crystallized titania powder. Journal of the European ceramic society. 1998, 18, 2175-2181.18
Edwards, R. R.; Campbell, J. ; Milne, G. S. The impact of chloromethanes on the environment part 2, methyl chloride and methylene chloride. Chemical Industries, 1982, 41, 619– 627.
Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. Chemical Reviews. 1993, 93, 341-357.
Freedman, D. L.; Gossett, J. M. Biodegradation of dichloromethane and its utilization as a growth substrate under methanogenic conditions. Applied and environmental microbiology, 1991,57, 2847– 2857.
Ginley. D.S; M.A.Butler. the photoelectrolysis of water using iron anodes. Journal of Applied Physics. 1977, 48.No 5,2019-2021.
Gälli, R.; Leisinger, T. Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conservation & recycling, 1985,8, 91–100.
Finklea, H.O., Semiconductor Electrodes. Elsevier, New York, 1988, pp7.
Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chemical Revies. 1995, 95, 69-96.
Hung, C-H.; Role of Water in the Photocatalytic Degradation of Trichloroethylene Vapo on TiO2 Films. Environmental Science & Technology. 1997, 31, 1440-1445.
Jacoby, W. A.; Blake, D. M.; Fennell, J. A.; Boulter, J. E.; Vargo, L. M.; George M. C.; Dolberg, S. K. Heterogeneous Photovatalysis for Control of Volatic Organic Compounds in Indoor Air. Journal of the Air & Waste Management Association. 1996, 46,pp 891.
Jardim, W. F.; Aiberic, R. M.; Takiyama, M. K.; Huang, C.P.; Gas-phase Photocatalytic Destruction of Trichloroethylene (TCE) Using UV/TiO2,26th Mid-atlantic Industrial and Hazardous Waste Conference, Delaware, USA, August 1994.
Kamat, P. V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chemical Revies, 1993, 93, 267-300.
Kureti, S.; Weisweiler, W. A new route for the synthesis of high surface area γ-aluminium oxide xerogel. Applied Catalysis A: General. 2002, 225, 251-259.
Karvinen, S. The effects of trace elements on the crystal properties of TiO2. Solid State Sciences. 2003, 5, 811-819.
Lòpez, T.; Gomez, R.; Pecci, G.; Reyesl, P.; Bokhimi, X.; Novaro, O.
Effect of pH on the incorporation of platinum into the lattice of
sol–gel titania phases. Materials Letters. 1999, 40, 59–65.
Mizushima, K.; Tanaka, M.; Asai, A.; Iida, S.; Goodenough, Journal of Physics and Chemistry of Solids. 1979, 40, 1129.
Navio, J.; Testa, J.; Djedjeian, P.; Padron, J.; Rodriguez, D.; Litter, M. Applied Catalsis. A: General. 1999, 178, p191.
Obee, T. N. Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor. Environmental science & technology. 1996, 30, 3578-3584.
Pinard, L.; Mijoin, J.; Magnoux, P.;Guisnet, M. Oxidation of chlorinated hydrocarbons over Pt zeolite catalysts 1-mechanism of dichloromethane transformation over PtNaY catalysts..Journal of Catalysis 2003, 215,234–244.
Quin, D.; Chang, W.; Zhou, J.; Chen, Y. Thermochimica Acta .1994, 236, 205.
Rideh, L.; Wehrer, A.; Ronze, D.; Zuolalian, A. Photocatalytic Degradation of 2-Chlorophenol in TiO2 Aqueous suspension : Modeling of Reaction Rate. Industrial & engineering chemistry research. 1997, 36, 4712-4718.
Selloni, A., A. The Adsorption of Small Molecules on the TiO2 Anatase (101) Surface by First-Principles Molecular Dynamics. Surface Science. 1998, 402-404, 219-222.
Serpone, N.; Lawless, D. Spectroscopic, Photoconductivity, and Photocatalytic Studies of TiO2 Colloids: Naked and with the Lattice Doped with Cr3+, Fe3+, and V5+ Cations. Langmuir. 1994, 10, 643.
Schwertmann, U.;Cornell,R.M.Iron Oxides in the laboratory. WILEY-VCH, 2000,pp11.
Socrates, G.; Infrared and Raman characteristic group frequencies :/tables and charts. Chichester,New York, 2001.
Suri, R. P. S.; Liu, J.; Hand, D. W.; Crittenden, J. C.; Perram, D.L.; Mulins, M. E. Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in water. Water Environment Research, 1993, 65, No. 5, pp. 665
S.music. Chemical and microstructural proerties of tio2 synthesized by sol-gel procedure. Materials Science and Engineering B. 1997, 47, 33-40.
Sivakumar, S.;P. Krishna Pillai.; Mukundan, P.; K.G.K. Warrier. Sol–gel synthesis of nanosized anatase from titanyl sulfate. Materials Letters. 2002, 57, 330–335.
Vincent, R.; Poirot, P.; Subra, I.; Rieger, B. Cicolella, A. Occupational Exposure to Organic Solvents during Paint Stripping and Painting Operations in the Aeronautical Industry. International archives of occupational and environmental health. 1994, 65, 377-380.
Valentina, I.; Krausova, Frank T.; Robb, Juan.M. González .; Bacterial degradation of dichloromethane in cultures and natural environments. Journal of Microbiological Methods .2003, 54,419– 422.
Wang, J. A.; R. Limas-Ballesteros. Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. Journal of Physical Chemistry B. 2001, 105, 9692-9698.
Wonyong, C.; Andreas Termin.; Michael R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Journal of Physical Chemistry. 1994, 98, 13669-13679.
Watanabe, T.; Kitamura, A.; Kojima, E.; Nakayama, C.; Hashimoto, K.; Fujishima, A. Photocatalytic Activity of TiO2 Thin Film under Room Light. Photocatalytic Purification and Treatment of Water and Air. 1992 , 747-752.
Ye, J.; Zou, Z.; Oshikiri, M.; Matsushita, A.; Shimoda, M.; Imai, M.; Shishido, T. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chemical Physics Letters. 2002, 356, 221-226.
Yu, J.; Zhao, X.; Qingnan Zhao. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol–gel method. Materials Chemistry and Physics . 2001, 69, 25-29.
Wang, Z-M.; Guixiang Yang.; Pratim Biswas. ; Wayne Bresser ; Punit Boolchand. Processing of iron-doped titania powders in flame aerosol reactors . Powder Technology. 2001, 114, 197–204.
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M = Mn, Fe, Co, Ni and Cu) photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry. 2002, 148, 65–69.
Zhang, Z.; Wang, C.; Zakaria, R.; J. Ying,; Journal of Physical Chemistry B. 1998, 102, 10871.
勞工安全衛生研究所,http://www.iosh.gov.tw/intro/show/show7.htm
劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,1992,15-31。
蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。
蔡文田,「含氯溶劑可行減廢技術介紹」,工業污染防治,第三期,1993.,171-182。
盧滄海、賴龍山,「廢溶劑回收可行性探討」,工業污染防治,第29期,1989,102-117。
劉國棟,「VOC管制趨勢展望」,工業污染防制,第48期,1992,15-31。
蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊,第四期,1992,41-58。
蔡金津,「奈米顆粒及薄膜之溶膠-凝膠技術」,化工資訊,十一月,2001,16-21。
董俊興,經摻雜之二氧化鈦觸媒膜光分解性質之研究,國立中央大學化學工程學系碩士論文,2001年
陳威倩,以γ-> α-Fe2O3相變機制製作alpha-Fe2O3微粒,國立成功大學資源工程學系碩士論文,2001。
陳慧英,黃定加,朱秦億,「溶膠凝膠法在薄膜製備上的應用」,化工技術,第七卷,第十一期,1999,152-167。