| 研究生: |
張舒晴 Chang, Shu-Ching |
|---|---|
| 論文名稱: |
應用CMB受體模式分析餐飲油煙對細懸浮微粒濃度之影響 Estimation for Contribution of Cooking Smoke to the Ambient PM2.5 by Using CMB |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 化學質量平衡模式 、餐飲油煙 、脂肪酸 |
| 外文關鍵詞: | cooking smoke, fatty acids, CMB model |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來餐飲油煙被視為空氣品質的重要污染源之一,產生的細懸浮微粒及高比例的有機碳成分貢獻被廣泛的討論;本研究建置指紋資料,並以CMB受體模式分析周界細懸浮微粒的各污染源貢獻比例。
餐飲業油煙細懸浮微粒之有機碳成分佔比為66.2-72.2%。相較於有機碳成分,無機碳成分之佔比僅佔1.0-2.4%,以OC1、OC2和OC3為主,三者佔碳成分70%以上,脂肪酸佔比高達(3.6-37.9%)。稻草燃燒指紋,無機離機約佔30%,有機碳約40%、無機碳為7%;鉀離子與氯離子佔了80%以上的離子成分;量測之脂肪酸佔細懸浮微粒約0.8%,遠小於餐飲油煙氣膠分析結果。
周界質量濃度比例中無機離子約佔55%,碳成分平均約佔20%-30%,皆以銨根、硝酸根和硫酸根為主,硫酸根成分比例之時間趨勢並沒有明顯的季節和四時段變化,硝酸根比例則有明顯呈現夏季比例較低,冬季比例較高之趨勢,碳成分於月份差異為冬季有較高的碳質量濃度,兩季碳成分比例平均約25%,碳成分分析有機碳(OC)以OC3為主,平均為8%,無機碳以EC1為最高(7%)。總脂肪酸濃度以早上、中午和晚上有相近的濃度,半夜僅達其他時段的1/3,冬季雖有較高的脂肪酸質量濃度,但脂肪酸佔有機碳比例於夏季高,分別為冬季1.49%和夏季2.85%,棕櫚酸(C16)為濃度最高的脂肪酸。
而本研究對於餐飲油煙對周界PM2.5貢獻進行探討,貢獻來源以硫酸銨、地殼元素與移動源為主,總平均分別為29%、19%和21%。餐飲油煙貢獻比例皆在20%以下,以中午佔較高比例的貢獻,冬季貢獻比例高於夏季平均分別為17.2和13.7%,兩季時段依序為晚上10.7、11.8%,早上9.1%、11.6%,半夜7.9%、5.9%。
Cooking fume is regarded as one of the important sources of air quality pollution. In this study, the source profiles have been established and the source apportionments have analyzed by using CMB.
By using the Quartz and Teflon filter to collect cooking smoke and ambient aerosol. The dominant chemical components in cooking smokes are organic carbon which account for 66.2-72.2% and the fraction of elemental carbon is less than 3%. Most of the carbon are OC1-OC3. Different from cooking smoke, straw burning accounted for about 30% water-soluble ions and about 40% organic carbon. Potassium and chloride ion are the major ions. Fatty acid range from 3.6-37.9% in cooking samples much higher than straw burning which is less than 1% in straw burning aerosol. In the mass concentration of fine particle, inorganic ions contribute about 55%. For organic carbon which is composed of OC2 (8%), and EC1 (7%) for elemental carbon. There is a higher mass concentration of fatty acids in winter, the proportion of fatty acids of organic carbon is higher in summer, which is 1.49% in winter and 2.85% in summer. Palmitic acid (C16) is the highest concentration of fatty acids.
Source profiles and Tainan ambient fine particle were used to CMB 8.2 to model the apportionment. The average contribution of cooking smoke is below 20%. With the highest contribution at noon, the lowest contribution is in the middle of the night no matter winter or summer.
Buonanno, G., Johnson, G., Morawska, L., & Stabile, L. Volatility characterization of cooking-generated aerosol particles. Aerosol Science and Technology, 45(9), 1069-1077. (2011).
Buonanno, G., Morawska, L., & Stabile, L. Particle emission factors during cooking activities. Atmospheric Environment, 43(20), 3235-3242. (2009).
Calvert, J. G., & Stockwell, W. R. Acid generation in the troposphere by gas-phase chemistry. Environmental science & technology, 17(9), 428A-443A. (1983).
Chakraborty, A., Bhattacharjee, A., Sodani, A., Jain, D., & Mukhopadhyay, G. Herbal Hair Gel Formulation having 5 α-Reductase Inhibitory Activity and its Standardization by HPTLC. J Anal Bioanal Tech, 7(341), 2. (2016).
Dong, J., Chen, W., Wang, S., Zhang, J., Li, H., Guo, H., ... & Chen, B. Jones oxidation and high performance liquid chromatographic analysis of cholesterol in biological samples. Journal of Chromatography B, 858(1-2), 239-246. (2007).
Fine, P. M., Cass, G. R., & Simoneit, B. R. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environmental Science & Technology, 35(13), 2665-2675. (2001).
Fraser, M. P., Yue, Z. W., Tropp, R. J., Kohl, S. D., & Chow, J. C. Molecular composition of organic fine particulate matter in Houston, TX. Atmospheric Environment, 36(38), 5751-5758. (2002).
Fu, P., Kawamura, K., Okuzawa, K., Aggarwal, S. G., Wang, G., Kanaya, Y., & Wang, Z. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. Journal of Geophysical Research: Atmospheres, 113(D19). (2008).
Funazo, K., Tanaka, M., Yasaka, Y., Takigawa, H., & Shono, T. New ultraviolet labelling agents for high-performance liquid chromatographic determination of monocarboxylic acids. Journal of Chromatography A, 481, 211-219. (1989).
Hays, M. D., Fine, P. M., Geron, C. D., Kleeman, M. J., & Gullett, B. K. Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmospheric environment, 39(36), 6747-6764. (2005).
He, L. Y., Hu, M., Huang, X. F., Yu, B. D., Zhang, Y. H., & Liu, D. Q. Measurement of emissions of fine particulate organic matter from Chinese cooking. Atmospheric Environment, 38(38), 6557-6564. (2004).
Hildemann, L. M., Markowski, G. R., & Cass, G. R. Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science & Technology, 25(4), 744-759. (1991).
Ho, K. F., Ho, S. S. H., Lee, S. C., Kawamura, K., Zou, S. C., Cao, J. J., & Xu, H. M. Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM 2.5 in Pearl Delta River Region, China. Atmospheric Chemistry and Physics Discussions, 10(11), 26677-26703. (2010).
Ho, K. F., Huang, R. J., Kawamura, K., Tachibana, E., Lee, S. C., Ho, S. S. H., ... & Tian, L. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM 2.5 aerosol collected during CAREBeijing-2007: An effect of traffic restriction on air quality. Atmospheric Chemistry and Physics, 15(6), 3111-3123. (2015).
Ho, K. F., Lee, S. C., Ho, S. S. H., Kawamura, K., Tachibana, E., Cheng, Y., & Zhu, T. Dicarboxylic acids, ketocarboxylic acids, α‐dicarbonyls, fatty acids, and benzoic acid in urban aerosols collected during the 2006 Campaign of Air Quality Research in Beijing (CAREBeijing‐2006). Journal of geophysical research: atmospheres, 115(D19). (2010).
Hou, X., Zhuang, G., Sun, Y., & An, Z. Characteristics and sources of polycyclic aromatic hydrocarbons and fatty acids in PM2.5 aerosols in dust season in China. Atmospheric Environment, 40(18), 3251-3262. (2006).
Kawamura, K., & Ikushima, K. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology, 27(10), 2227-2235. (1993).
Kim, K. H., Pandey, S. K., Kabir, E., Susaya, J., & Brown, R. J. The modern paradox of unregulated cooking activities and indoor air quality. Journal of Hazardous materials, 195, 1-10. (2011).
Kourtchev, I., Warnke, J., Maenhaut, W., Hoffmann, T., & Claeys, M. Polar organic marker compounds in PM2. 5 aerosol from a mixed forest site in western Germany. Chemosphere, 73(8), 1308-1314. (2008).
Kubátová, A., Vermeylen, R., Claeys, M., Cafmeyer, J., & Maenhaut, W. Organic compounds in urban aerosols from Gent, Belgium: Characterization, sources, and seasonal differences. Journal of Geophysical Research: Atmospheres, 107(D21). (2002).
Levy, J. I., Dumyahn, T., & D SPENGLER, J. O. H. N. Particulate matter and polycyclic aromatic hydrocarbon concentrations in indoor and outdoor microenvironments in Boston, Massachusetts. Journal of Exposure Science and Environmental Epidemiology, 12(2), 104. (2002).
McDonald, J. D., Zielinska, B., Fujita, E. M., Sagebiel, J. C., Chow, J. C., & Watson, J. G. Emissions from charbroiling and grilling of chicken and beef. Journal of the Air & Waste Management Association, 53(2), 185-194. (2003).
Mehta, A., Oeser, A. M., & Carlson, M. G. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 719(1-2), 9-23. (1998).
Mkoma, S. L., & Kawamura, K. Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons. Atmospheric Chemistry and Physics, 13(4), 2235-2251. (2013).
Nolte, C. G., Schauer, J. J., Cass, G. R., & Simoneit, B. R. (1999). Highly polar organic compounds present in meat smoke. Environmental science & technology, 33(19), 3313-3316.
Oliveira, C., Pio, C., Alves, C., Evtyugina, M., Santos, P., Gonçalves, V., ... & Harrad, S. Seasonal distribution of polar organic compounds in the urban atmosphere of two large cities from the North and South of Europe. Atmospheric Environment, 41(27), 5555-5570. (2007).
Oros, D. R., & Simoneit, B. R. T. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79(5), 515-536. (2000).
Pilinis, C., & Seinfeld, J. H. Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967), 22(9), 1985-2001. (1988).
Rioux, V., Catheline, D., Bouriel, M., & Legrand, P. High performance liquid chromatography of fatty acids as naphthacyl derivatives. Analusis, 27(2), 186-193. (1999).
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science & Technology, 25(6), 1112-1125. (1991).
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environmental Science & Technology, 27(13), 2700-2711. (1993).
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., & Simoneit, B. R. Sources of fine organic aerosol. 8. Boilers burning No. 2 distillate fuel oil. Environmental science & technology, 31(10), 2731-2737. (1997).
Rogge, W. F., Medeiros, P. M., & Simoneit, B. R. Organic compounds in dust from rural and urban paved and unpaved roads taken during the San Joaquin Valley fugitive dust characterization study. Environmental Engineering Science, 29(1), 1-13. (2012).
Rogge, W. F., Medeiros, P. M., & Simoneit, B. R. Organic marker compounds for surface soil and fugitive dust from open lot dairies and cattle feedlots. Atmospheric Environment, 40(1), 27-49. (2006).
Schauer, J. J., & Cass, G. R. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers. Environmental science & technology, 34(9), 1821-1832. (2000).
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. Measurement of emissions from air pollution sources. 3. C1− C29 organic compounds from fireplace combustion of wood. Environmental science & technology, 35(9), 1716-1728. (2001).
Schauer, J. J., Kleeman, M. J., Cass, G. R., & Simoneit, B. R. Measurement of emissions from air pollution sources. 5. C1− C32 organic compounds from gasoline-powered motor vehicles. Environmental science & technology, 36(6), 1169-1180. (2002).
See, S. W., & Balasubramanian, R. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42(39), 8852-8862. (2008).
See, S. W., Karthikeyan, S., & Balasubramanian, R. Health risk assessment of occupational exposure to particulate-phase polycyclic aromatic hydrocarbons associated with Chinese, Malay and Indian cooking. Journal of Environmental Monitoring, 8(3), 369-376. (2006).
Siegmann, K., & Sattler, K. Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science, (27), S493-S494. (1996).
Siegmann, K., & Sattler, K. Aerosol from hot cooking oil, a possible health hazard. Journal of Aerosol Science, (27), S493-S494. (1996).
Simoneit, B. R., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., ... & Cass, G. R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33(2), 173-182. (1999).
Wang, G., & Kawamura, K. Molecular characteristics of urban organic aerosols from Nanjing: A case study of a mega-city in China. Environmental science & technology, 39(19), 7430-7438. (2005).
Wang, G., Cheng, S., Wei, W., Wen, W., Wang, X., & Yao, S. Chemical characteristics of fine particles emitted from different Chinese cooking styles. Aerosol Air Qual. Res, 15(6), 2357-2366. (2015).
Watson, J. G. Visibility: Science and regulation. Journal of the Air & Waste Management Association, 52(6), 628-713. (2002).
Wood R. and T. LEE. High-performance liquid chromatography of fatty acids: quantative analysis of saturated, monoenoic, polyenoic and geometrical isomers. Journal of Chromatography. 254:237-246. (1983).
Yeung, L. L., & To, W. M. Size distributions of the aerosols emitted from commercial cooking processes. Indoor and built environment, 17(3), 220-229. (2008).
Zhang, Y. X., Shao, M., Zhang, Y. H., Zeng, L. M., He, L. Y., Zhu, B., ... & Zhu, X. L. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences, 19(2), 167-175. (2007).
Zhao, Y., Hu, M., Slanina, S., & Zhang, Y. Chemical compositions of fine particulate organic matter emitted from Chinese cooking. Environmental science & technology, 41(1), 99-105. (2007a).
Zhao, Y., Hu, M., Slanina, S., & Zhang, Y. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking. Atmospheric Environment, 41(37), 8163-8171. (2007b).
Zheng, M., Cass, G. R., Schauer, J. J., & Edgerton, E. S. Source apportionment of PM2. 5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental science & technology, 36(11), 2361-2371. (2002).
Zhu, L., & Wang, J. Sources and patterns of polycyclic aromatic hydrocarbons pollution in kitchen air, China. Chemosphere, 50(5), 611-618. (2003).
李建宏. 室內空氣污染因子與台灣不吸菸婦女肺癌之研究. 高雄醫學大學醫學研究所學位論文, 1-114. (1999).
林建利. 稻作種類 Chamber 燃燒粒子特徵暨碳排放研究. 國立雲林科技大學, 碩士論文. (2012).
謝宗成. 農廢燃燒對嘉南地區空氣品質影響. 成功大學環境工程學系學位論文, 1-111. (2010).
楊佳曄. 建置餐飲油煙 PM2.5 指紋資料以探討餐飲活動對周界 PM2.5 之貢獻比例. 成功大學環境工程學系學位論文, 1-105. (2017).
吳姿樺, 蔡春進, & 簡弘民. 一個員工餐廳的靜電除油煙機的控制效率 (Doctoral dissertation). (2008).
魏仕杰. 農廢燃燒對大氣氣膠濃度與組成之影響. 成功大學環境工程學系學位論文, 1-103. (2010).
校內:2022-08-30公開