簡易檢索 / 詳目顯示

研究生: 李蒔芸
Lee, Shi-Yun
論文名稱: 基於粒子群演算法於考慮鋰離子電池剩餘電量和健康度情境下之四階段定電流充電的分析
Analysis of Four-Stage Constant Current Charging Based on Particle Swarm Algorithm Considering the Remaining State-of-Charge and State-of-Health of Li-ion Batteries
指導教授: 李建興
Lee, Chien-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 114
中文關鍵詞: 鋰離子電池快充多階段定電流充電粒子群演算法電池老化
外文關鍵詞: Li-ion batteries, fast charging method, multi-stage constant current charging , particle swarm optimization, battery aging
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了因應淨零碳排放的目標,電動載具尤其是電動車的需求漸增,且為了滿足鋰離子電池快充又能延長電池壽命,本研究以四階段定電流充電法為基礎,根據電池健康度與內電阻來建立電池模型,用以模擬四階段定電流充電時間、充完電量與充電過程能量損失等三種目標參數,並藉由粒子群演算法進行搜尋四階段最佳充電電流組合。本文先以電池初始電量20%為例,比較上限電壓和剩餘等份電量兩種切換機制於充放電循環後對電池老化之影響,接著評估當電池的初始電量與健康度為隨機時,使用粒子群演算法進行多目標分析來尋找最佳充電電流組合。由上限電壓切換機制之結果顯示,實驗組與對照組在同樣循環次數下,因電池健康度與內電阻會影響充電電流值,變動充電電流實驗組與固定充電電流對照組在同樣循環次數時,實驗組雖增加12.13%充電時間,但節省24.5%的能量損失與增加0.26%充電電量。於35次充放電循環下,實驗組相較於對照組延緩2.05%健康度的衰退,且以半經驗容量模型所預估鋰離子電池健康度80%汰換標準下,實驗組多出約121次充放電循環次數。由剩餘等份電量切換機制之結果顯示,在同樣循環次數下,實驗組可節省21.15%的能量損失但會增加10.17%的充電時間,且於30次充放電循環下,實驗組延緩1.52%健康度衰退,可多出約105次充放電循環次數。最後,由隨機初始電量與健康度之結果顯示,在初始電量16.8%與健康度91.18%情境和初始電量37.4%與健康度91.56%情境下,剩餘等份電量目標函數結果較佳,在初始電量67.4%與健康度92.97%情境和初始電量87%與健康度92.31%情境下則是上限電壓結果較佳。

    The target of net-zero emissions and demand for electric vehicles is booming. To find a method fulfill fast charging and extend Lithium-ion battery life. This study establishes a model based on battery health and internal resistance to simulate three parameters including charge time, charge capacity, and energy loss using a four-stage constant current (4SCC) charging method. Then, a particle swarm algorithm (PSO) is used to search for the optimal charging current combination. First of all, takes an initial state-of-charge (SoCini) 20% as an example to compare the impact of the two switching mechanisms of upper limit voltage (Vlimit) and equally discretized the remaining SoC intervals (EDR-SoC) on battery aging after charge and discharge cycles. Then, a search of multi-objective PSO charging current was analyzed under random SoCini and state-of-health (SoH). For the Vlimit strategy, comparing the experimental group with the control group for the same cycle numbers, the charge time, energy saving, and charge capacity had an increase of 12.13%, 24.5%, and 0.26%, respectively. Moreover, the experimental group was able to extend the capacity degradation of 2.05% after 35 cycles as compared to the control group, and it had an increase of about 121 more cycles when employing the semi-empirical capacity model for predicting the battery life ended within 80% SoH. For EDR-SoC strategy, the charging time increased by 10.17% and the energy saving increased by 21.15%. After 30 cycles, the experimental group was able to extend the capacity degradation of 1.52% as compared to the control group corresponding to 105 more cycles. Furthermore, under random SoCini and SoH conditions, EDR-SoC was better than Vlimit at SoCini 16.8%, SoH 91.18% and SoCini 37.4%, SoH 91.56%. Then Vlimit was better than EDR-SoC at SoCini 67.4%, SoH 92.97% and SoCini 87%, SoH 92.31%.

    摘要 i 誌謝 x 目錄 xi 表目錄 xv 圖目錄 xvi 符號說明 xviii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本論文之貢獻 3 1.4 本論文之架構 4 第二章 電池特性簡介 6 2.1 二次電池概述 6 2.2 鋰離子電池之介紹 9 2.2.1 充放電化學反應 9 2.2.2 鋰離子電池種類 10 2.2.3 充電技術 12 2.3 鋰離子電池之專有名詞 14 2.4 影響電池老化因素 16 2.4.1 SEI膜生成與降解 17 2.4.2 石墨剝離 18 2.4.3 鍍鋰 18 2.4.4 枝晶 18 2.4.5 電極破裂 18 2.4.6 過渡金屬溶解 19 2.4.7 集電器腐蝕 19 第三章 鋰離子電池等效電路模型之參數估計 20 3.1 前言 20 3.2 電池電量估測方法 20 3.2.1 開路電壓法 20 3.2.2 庫倫積分法 24 3.2.3 內阻法 25 3.3 健康度估測方法 25 3.3.1 靜態容量 26 3.3.2 半經驗容量衰減模型 26 3.3.3 增量容量分析 27 3.3.4 機器學習 28 3.4 內電阻估測方法 29 3.4.1 電化學阻抗圖譜法 29 3.4.2 混合脈衝特性測試 30 第四章 自適應性四階段定電流充電之設計 34 4.1 前言 34 4.2 充電切換機制與演算法的選擇 34 4.3 研究問題描述 35 4.4 粒子群演算法 40 4.4.1 原理 40 4.4.2 認知學習係數與社會學習係數 42 4.4.3 慣性權重 43 4.4.4 群體數量 44 4.4.5 初始速度與最大速度之限制 45 4.5 基於電池初始電量的剩餘充電階段數與電量選擇 45 4.6 以粒子群演算法搜尋四階段最佳充電電流 47 第五章 鋰離子電池基於老化的模擬與實驗結果 52 5.1 實驗設置 52 5.2 循環老化的實驗流程 59 5.3 不同切換機制下四階段定電流充電法循環次數之實驗結果 61 5.3.1 基於老化與未基於老化健康度之比較 61 5.3.2 基於老化與未基於老化之四階段充電循環次數的比較 66 5.3.3 以半經驗容量模型預估循環次數 72 5.4 隨機初始電量與健康度之四階段定電流充電的實驗 77 5.4.1 情境一 77 5.4.2 情境二 78 5.4.3 情境三 79 5.4.4 情境四 80 5.5 實驗結果分析 84 5.5.1 不同切換機制老化性能分析與討論 84 5.5.2 不同切換機制隨機初始電量與健康度目標函數的比較 84 第六章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 88

    [1] 許浩勇。2022年主要電動車銷售國家市場概況。檢自https://www.artc.org.tw/tw/%20knowledge/articles/13697(Mar. 08,2024)
    [2] S. -Y. Park, H. Miwa, B. -T. Clark, D. S. -K. Ditzler, G. Malone, N. -S. D’souza, and J. -S. Lai, “A universal battery charging algorithm for Ni-Cd, Ni-MH, SLA, and Li-ion for wide range voltage in portable applications,” IEEE Power Electronics Specialists Conference, pp. 4689-4694, Rhodes, Greece, Jun. 15-19, 2008.
    [3] A. -C. Hua and B. Z. -W. Syue, “Charge and discharge characteristics of lead-acid battery and LiFePO4 battery,” International Power Electronics Conference, pp. 1478-1483, Sapporo, Japan, Jun. 21-24. 2010.
    [4] N. Kularatna, “Rechargeable batteries and their management,” IEEE Instrumentation & Measurement Magazine, vol. 14, no. 2, pp.20-33, Apr. 2011.
    [5] J.-W. Li, Y.-Y. Li, S.-N. Zhang, T. Liu, D.-P. Li, and L.-J, Ci, “Long cycle life all-solid-state batteries enabled by solvent-free approach for sulfide solid electrolyte and cathode films,” Chemical Engineering Journal, vol. 455, 140605, Jan. 2023.
    [6] A. Tomaszewska, Z. Chu, X. Feng, S. O'Kane, X. Liu, J. Chen, C. Ji, E. Endler, R. Li, L. Liu, Y. Li, S. Zheng, S. Vetterlein, M. Gao, J. Du, M. Parkes, M. Ouyang, M. Marinescu, G. Offer, and B. Wu, “Lithium-ion battery fast charging: a review,” eTransportation, vol. 1, 100011, Aug. 2019.
    [7] T. Ikeya, N. Sawada, S. Takagi, J. Murakami, K. Kobayashi, T. Sakabe, E. Kousaka, H. Yoshioka, S. Kato, M. Yamashita, H. Narisoko, Y. Mita, K. Nishiyama, K. Adachi, and K. Ishihara, “Multi-step constant-current charging method for electric vehicle, valve-regulated, lead/acid batteries during night time for load-levelling,” J. of Power Sources, vol. 75, no. 1, pp. 101-107, Sept. 1998.
    [8] L. R. Dung and J. H. Yen, “ILP-based algorithm for lithium-ion battery charging profile,” IEEE International Symposium on Industrial Electronics, pp. 2286-2291, Bari, Italy, Nov. 4-7, 2010.
    [9] 王信傑,“三階段定電流充電法於鋰離子電池之最佳充電電流波形的搜尋”,國立成功大學系統及船舶機電工程系,碩士論文,民國110年7月。
    [10] C.-H. Lee, T.-W. Chang, S.-H. Hsu, and J.-A. Jiang, “Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries,” J. of Energy Storage, vol. 21, pp. 301-309, Feb. 2019.
    [11] 林奎佑,“考慮切換機制之四階段定電流充電法對電池具不同初始電量的分析”,國立成功大學系統及船舶機電工程系,碩士論文,民國111年7月。
    [12] T.-T. Vo, X. Chen, W. Shen, and A. Kapoor, “New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation,” Journal of Power Sources, vol. 273, pp. 413-422, Jan. 2015.
    [13] Y. Li, K. Liu, A.-M. Foley, A. Zülke, M. Berecibar, E.-N. Maury, J.-V. Mierlo, and H.E. Hoster “Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review,” Renewable and Sustainable Energy Reviews, vol. 113, 109254, Oct. 2019.
    [14] W. Zhou, Y. Lheng, Z. Pan, and Q. Lu, “Review on the battery model and SOC estimation method,” Processes, vol. 9, no. 9, Sept. 2021.
    [15] C. Liu and L. Liu, “Optimizing battery design for fast charge through a genetic algorithm based multi-objective optimization framework,” ECS Transactions, vol. 77, no. 11, pp. 257-271, 2017.
    [16] G.-J. Chen, Y.-H. Liu, S.-C Wang, Y.-F Luo, and Z.-Z. Yang, “Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of Li-ion batteries,” J. of Energy Storage, vol. 33, 101933, Jan. 2021.
    [17] S. Kumar and N. S. Pal, “Ant colony optimization for less power consumption and fast charging of battery in solar grid system,” IEEE 4th Uttar Pradesh Section International Conference on Electrical, Computer and Electronics, Mathura, India, Oct. 26-28 2017.
    [18] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based optimization algorithms,” Advanced Engineering Informatics, vol. 19, no. 1, pp. 43-53, Jan. 2005.
    [19] D. Wang, D. Tan, and L. Liu, “Particle swarm optimization algorithm: an overview,” Soft Computing, vol. 22, no. 2, pp. 387-408, Jan. 2018.
    [20] C. -H. Lee, Z. -Y. Wu, S. -H. Hsu, and J. -A. Jiang, “Cycle life study of Li-ion batteries with an aging-level-based charging method,” IEEE Transaction on Energy Conversion, vol. 35, no. 3, pp. 1475-1484, Sept. 2020.
    [21] Y. Zhang, X. Li, L. Su, Z. Li, B. Y. Liaw, and J. Zhang, “Lithium plating detection and quantification in Li-ion cells from degradation behaviors,” ECS Transactions, vol. 75, no. 23, pp. 37-50, Jan. 2017.
    [22] 智明電子司。鋰電池。檢自https://mypaper.pchome.com.tw/carled31599/about (May 06,2024)
    [23] H. J. Bergveld, W. S. Kruijt, and P. H. L. Notten, Battery Management Systems Design by Modelling, Philips Research Book Series, Kluwer Academic Publishers, Boston, USA, 2002.
    [24] Sanyo UR14500AC 800mAh Li-ion Rechargeable AA Battery Datasheet, (Data of retrieval: Jan. 20, 2024): http://www.evva-tech.com/plus/view.php?aid=147
    [25] P. Ramadass, B. Haran, R. White, and B.-N. Popov, “Mathematical modeling of the capacity fade of Li-ion cells,” J. Power sources, vol. 123, no.2, pp.230-240, Sept. 2003.
    [26] Z. Liu, C.-M. Tan, and F. Leng. “A reliability-based design concept for lithium-ion battery pack in electric vehicles,” Reliability Engineering & System Safety, vol. 134, pp. 169-177, Feb. 2015.
    [27] P. Vadhva, J. Hu, M. J. Johnson, R. Stocker, M. Braglia, D. J. L. Brett, and A. J. E. Rettie, “Electrochemical impedance spectroscopy for all-solid-state batteries: theory, methods and future outlock,” ChemElectroChem, vol. 8, 1930, Apr. 2021
    [28] R.-C. Nacu and D. Fodorean, “Lithium-ion cell characterization, using hybrid current pulses for subsequent battery simulation in mobility applications,” Processes, vol. 10, no. 10, Oct. 2022.
    [29] Y. Wang, Y. Li, L. Jiang, Y. Huang, and Y. Cao, “PSO-based optimization for constant-current charging pattern for Li-ion battery, ” Chinese Journal of Electrical Engineering, vol. 5, no. 2, pp. 72-78, Jun. 2019.
    [30] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397-407, Feb. 2004.
    [31] F. Marini and B. Walczak, “Particle swarm optimization (PSO). A tutorial,” Chemometrics and Intelligent Laboratory Systems, vol. 149, Part B, pp. 153-165, Dec. 2015.
    [32] A. Engelbrecht, “Particle swarm optimization: velocity initialization,” IEEE Congress on Evolutionary Computation, pp. 1-8, Brisbane, QLD, Australia, Jun. 10-15, 2012.
    [33] H. H. Rosenbrock, “An automatic method for finding the greatest or least value of a function,” The Computer Journal , vol. 3, no. 3, pp. 175-184, 1960.
    [34] F. Leng, C.-M. Tan, R. Yazami, and M.-D. Le, “A practical framework of electrical based online state-of-charge estimation of lithium-ion batteries,” J. Power Sources, vol. 255, pp.423-430, Jun. 2014.
    [35] 陳麒,“可充鋰電池循環壽命的半經驗數學模型”,長庚大學電子工程學系,碩士論文,民國109年7月。

    無法下載圖示 校內:2029-07-18公開
    校外:2029-07-18公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE