| 研究生: |
何偲睿 He, Sih-Ruei |
|---|---|
| 論文名稱: |
以Facebook貼文判斷人格特質之方法研發 Development of Personality Identification Method Using Facebook Posts |
| 指導教授: |
陳裕民
Chen, Yuh-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 隱含狄利克雷分布 、機器學習 、人格預測 、社群網站 |
| 外文關鍵詞: | Latent Dirichlet allocation(LDA), Machine learning, Personality prediction, Social network website |
| 相關次數: | 點閱:113 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業首要目的是為獲利,過去許多研究顯示人格與許多的購買行為都具有相關性,因此若能掌握客群的人格,便有助於企業進行有效的行銷手段進而獲取利益。企業在傳統的人格評測方式上,花費在時間與人力的成本十分高昂,因此如何有效地對目標客群進行自動化人格判斷便是相當值得研究的議題。近年蓬勃發展的各式社群網站已成為使用者公開發表言論並與他人進行互動的平台,也因此有許多的研究投入並證實在社群網站中的行為與人格之間的關聯性,但社群網站的發展非常快速也十分多元,所以若能有一自動化人格判斷方法可以套用在不同的社群網站上方能增進人格判斷的方便性與完善性。本研究以自動化的主題判斷,分類使用者在Facebook上的貼文與喜好的粉絲專頁貼文,發展一以Facebook貼文判斷人格特質之方法。研究方法發現在五大人格中敏感度高的人,經常關注談論兩性與感情議題的粉絲專頁;常發表文創相關內容貼文的人,有著較高的開放性。
Many studies have shown that personality is related to purchase behaviors. Therefore, if you can grasp the personality of the customer group, it will help the company to carry out effective marketing and gain benefits. In the past, personality judging method wastes time and manpower. Therefore, how to effectively judge the target customers is a worthy issue. The social network flourished in recent years have become a platform for users to share and social. Actually, researchers have confirmed the relationship between social network behaviors and personality. The growing of social network is very fast, so an automated personality judgment method that can be applied to different social network is important. The study uses automated topics judgments to classify users' posts on Facebook and posts in fan page to develop a method for judging personality traits with Facebook posts. The research found people with high sensitivity pay attention to fan pages about gender and emotional issues; who publish cultural and creative posts have a high degree of openness.
Key words: Latent Dirichlet allocation(LDA); Machine learning; Personality prediction; Social network website.
1. Adali, S. and J. Golbeck. Predicting personality with social behavior. in Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012). 2012. IEEE Computer Society.
2. Allport, G.W., Pattern and growth in personality. 1961.
3. Amichai-Hamburger, Y. and G. Vinitzky, Social network use and personality. Computers in human behavior, 2010. 26(6): p. 1289-1295.
4. Anderson, C., et al., Who attains social status? Effects of personality and physical attractiveness in social groups. Journal of personality and social psychology, 2001. 81(1): p. 116.
5. Arnoux, P.-H., et al., 25 Tweets to Know You: A New Model to Predict Personality with Social Media. arXiv preprint arXiv:1704.05513, 2017.
6. Azucar, D., D. Marengo, and M. Settanni, Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personality and Individual Differences, 2018. 124: p. 150-159.
7. Bachrach, Y., et al. Personality and patterns of Facebook usage. in Proceedings of the 4th annual ACM web science conference. 2012. ACM.
8. Bazarova, N.N., et al., Managing impressions and relationships on Facebook: Self-presentational and relational concerns revealed through the analysis of language style. Journal of Language and Social Psychology, 2012: p. 0261927X12456384.
9. Blackwell, D., et al., Extraversion, neuroticism, attachment style and fear of missing out as predictors of social media use and addiction. Personality and Individual Differences, 2017. 116: p. 69-72.
10. Blei, D.M., A.Y. Ng, and M.I. Jordan, Latent dirichlet allocation. Journal of machine Learning research, 2003. 3(Jan): p. 993-1022.
11. Cortes, C. and V. Vapnik, Support-vector networks. Machine Learning, 1995. 20(3): p. 273-297.
12. Costa, P.T. and R.R. McCrae, Four ways five factors are basic. Personality and individual differences, 1992. 13(6): p. 653-665.
13. Cs229, s., Simplified SMO Algorithm. 2009. p. 1-5.
14. Davis, B.J., Disc electrophoresis–II method and application to human serum proteins. Annals of the New York Academy of Sciences, 1964. 121(2): p. 404-427.
15. Deerwester, S., et al., Indexing by latent semantic analysis. Journal of the American society for information science, 1990. 41(6): p. 391.
16. Digman, J.M., Personality structure: Emergence of the five-factor model. Annual review of psychology, 1990. 41(1): p. 417-440.
17. Donnellan, M.B., R.D. Conger, and C.M. Bryant, The Big Five and enduring marriages. Journal of Research in Personality, 2004. 38(5): p. 481-504.
18. Donnellan, M.B., D. Larsen-Rife, and R.D. Conger, Personality, family history, and competence in early adult romantic relationships. Journal of personality and social psychology, 2005. 88(3): p. 562.
19. Ellison, N.B., C. Steinfield, and C. Lampe, The benefits of Facebook “friends:” Social capital and college students’ use of online social network sites. Journal of Computer‐Mediated Communication, 2007. 12(4): p. 1143-1168.
20. Farnadi, G., et al., Computational personality recognition in social media. User modeling and user-adapted interaction, 2016. 26(2-3): p. 109-142.
21. Gao, R., et al. Improving user profile with personality traits predicted from social media content. in Proceedings of the 7th ACM conference on Recommender systems. 2013. ACM.
22. Gerber, A.S., et al., Personality and political attitudes: Relationships across issue domains and political contexts. American Political Science Review, 2010. 104(1): p. 111-133.
23. Goldberg, L.R., The development of markers for the Big-Five factor structure. Psychological assessment, 1992. 4(1): p. 26.
24. Gosling, S.D., et al., Manifestations of personality in online social networks: Self-reported Facebook-related behaviors and observable profile information. Cyberpsychology, Behavior, and Social Networking, 2011. 14(9): p. 483-488.
25. Hagan, C., et al., Personality Profiles of Users Sharing Animal-related Content on Social Media. Anthrozoös, 2017. 30(4): p. 671-680.
26. Hayes, N. and S. Joseph, Big 5 correlates of three measures of subjective well-being. Personality and Individual differences, 2003. 34(4): p. 723-727.
27. Hofmann, T. Probabilistic latent semantic indexing. in Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval. 1999. ACM.
28. Howard, P.J. and J.M. Howard, The Big Five Quickstart: An Introduction to the Five-Factor Model of Personality for Human Resource Professionals. 1995.
29. Judge, T.A., et al., The big five personality traits, general mental ability, and career success across the life span. Personnel psychology, 1999. 52(3): p. 621-652.
30. Kakkonen, T., et al., Comparison of Dimension Reduction Methods for Automated Essay Grading. Educational Technology & Society, 2008. 11(3): p. 275-288.
31. Kalakota, R. and M. Robinson, e-Business 2.0: roadmap for success. 2001: Addison-Wesley Longman Publishing Co., Inc. 520.
32. Kassarjian, H.H., Personality and consumer behavior: A review. Journal of marketing Research, 1971: p. 409-418.
33. Komarraju, M., S.J. Karau, and R.R. Schmeck, Role of the Big Five personality traits in predicting college students' academic motivation and achievement. Learning and individual differences, 2009. 19(1): p. 47-52.
34. Kosinski, M., et al., Manifestations of user personality in website choice and behaviour on online social networks. Machine learning, 2014. 95(3): p. 357-380.
35. Kosinski, M., D. Stillwell, and T. Graepel, Private traits and attributes are predictable from digital records of human behavior. Proceedings of the National Academy of Sciences, 2013. 110(15): p. 5802-5805.
36. Kuss, D.J. and M.D. Griffiths, Online social networking and addiction—a review of the psychological literature. International journal of environmental research and public health, 2011. 8(9): p. 3528-3552.
37. Li, L., et al., Predicting active users' personality based on micro-blogging behaviors. PloS one, 2014. 9(1): p. e84997.
38. Liu, L., et al. Analyzing Personality through Social Media Profile Picture Choice. in ICWSM. 2016.
39. Liu, Y., J. Wang, and Y. Jiang, PT-LDA: A latent variable model to predict personality traits of social network users. Neurocomputing, 2016. 210: p. 155-163.
40. Maskeri, G., S. Sarkar, and K. Heafield. Mining business topics in source code using latent dirichlet allocation. in Proceedings of the 1st India software engineering conference. 2008. ACM.
41. Nave, G., et al., Musical preferences predict personality: evidence from active listening and facebook likes. Psychological science, 2018: p. 0956797618761659.
42. Nie, J., et al. Social media profiler: Inferring your social media personality from visual attributes in portrait. in Pacific Rim Conference on Multimedia. 2016. Springer.
43. Pennebaker, J.W., et al., The development and psychometric properties of LIWC2015. UT Faculty/Researcher Works, 2015.
44. Pennebaker, J.W. and L.A. King, Linguistic styles: language use as an individual difference. Journal of personality and social psychology, 1999. 77(6): p. 1296.
45. Pennebaker, J.W., M.R. Mehl, and K.G. Niederhoffer, Psychological aspects of natural language use: Our words, our selves. Annual review of psychology, 2003. 54(1): p. 547-577.
46. Pervin, L.A., D. Cervone, and O.P. John, Persönlichkeitstheorien. 2005: UTB Stuttgart.
47. Pervin, L.A. and O.P. John, Handbook of personality: Theory and research. 1999: Elsevier.
48. Qiu, L., et al., You are what you tweet: Personality expression and perception on Twitter. Journal of Research in Personality, 2012. 46(6): p. 710-718.
49. Quercia, D., et al. The personality of popular facebook users. in Proceedings of the ACM 2012 conference on computer supported cooperative work. 2012. ACM.
50. Rosen-Zvi, M., et al. The author-topic model for authors and documents. in Proceedings of the 20th conference on Uncertainty in artificial intelligence. 2004. AUAI Press.
51. Ross, C., et al., Personality and motivations associated with Facebook use. Computers in human behavior, 2009. 25(2): p. 578-586.
52. Ryff, C.D., et al., Personality and Aging. Birren,). E. & Schaie, KW (eds.), Handbook of the psychology of aging, 2001: p. 477-499.
53. Salton, G. and C. Buckley, Term-weighting approaches in automatic text retrieval. Information processing & management, 1988. 24(5): p. 513-523.
54. Schultz, D.P. and S.E. Schultz, Theories of personality. 2016: Cengage Learning.
55. Schwartz, H.A., et al., Personality, gender, and age in the language of social media: The open-vocabulary approach. PloS one, 2013. 8(9): p. e73791.
56. Seidman, G., Self-presentation and belonging on Facebook: How personality influences social media use and motivations. Personality and Individual Differences, 2013. 54(3): p. 402-407.
57. Sheth, J.N., B.I. Newman, and B.L. Gross, Why we buy what we buy: A theory of consumption values. Journal of business research, 1991. 22(2): p. 159-170.
58. Skowron, M., et al. Fusing social media cues: personality prediction from twitter and instagram. in Proceedings of the 25th international conference companion on world wide web. 2016. International World Wide Web Conferences Steering Committee.
59. Socher, R., et al. Recursive deep models for semantic compositionality over a sentiment treebank. in Proceedings of the conference on empirical methods in natural language processing (EMNLP). 2013. Citeseer.
60. Soldz, S. and G.E. Vaillant, The Big Five personality traits and the life course: A 45-year longitudinal study. Journal of Research in Personality, 1999. 33(2): p. 208-232.
61. Tausczik, Y.R. and J.W. Pennebaker, The psychological meaning of words: LIWC and computerized text analysis methods. Journal of language and social psychology, 2010. 29(1): p. 24-54.
62. Wang, S.S., “I share, therefore I am”: Personality traits, life satisfaction, and Facebook check-ins. Cyberpsychology, Behavior, and Social Networking, 2013. 16(12): p. 870-877.
63. Wei, H., et al. Beyond the words: Predicting user personality from heterogeneous information. in Proceedings of the tenth ACM international conference on web search and data mining. 2017. ACM.
64. Wiseman, R., 59 Seconds: Motivation: Think A Little, Change A Lot. 2011: Pan Macmillan.
65. Youyou, W., M. Kosinski, and D. Stillwell, Computer-based personality judgments are more accurate than those made by humans. Proceedings of the National Academy of Sciences, 2015. 112(4): p. 1036-1040.
66. 呂奇傑, et al., 支援向量機與支援向量迴歸於財務時間序列預測之應用. Journal of Data Analysis, 2009. 4(2): p. 35-56.
67. 李仁豪 and 余民寧, 心理幸福感量表簡式中文版信效度及測量不變性: 以大學生為樣本並兼論測量不變性議題. 中華輔導與諮商學報, 2016(46): p. 127-154.
68. 許又壬, Facebook 數位足跡為基之消費者購買決策型態預測方法發展. 成功大學製造資訊與系統研究所學位論文, 2016: p. 1-50.
69. 陳仲庚 and 張雨新, 人格心理學. 1992: 五南.
70. 陳億貞, 普通心理學. 台北: 雙葉書郎, 2002.
71. 陸洛, 人格心理學. 2004.
72. 薛秀宜, 陳利銘, and 洪佩圓, 人格理論新紀元: 人格五因素模式之測驗工具與其研究應用. 2006.
校內:2024-02-11公開