簡易檢索 / 詳目顯示

研究生: 劉聯璁
Liu, Lian-Cong
論文名稱: 磷酸鈣+硫酸鈣複合材骨水泥性質研究
Investigation of properties of calcium phosphate+calcium sulfate composite cement
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
Ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 146
中文關鍵詞: 硫酸鈣磷酸鈣氫氧基磷灰石
外文關鍵詞: HA, calcium sulfate, calcium phosphate
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    磷酸鈣骨水泥具有優良的生物相容性與適當的機械強度,且具骨傳導支持作用,但不具有骨增生作用,所以在生物體內吸收速率相當緩慢使得骨細胞不易取代;硫酸鈣也具有良好的生物相容性,在生物體內溶解速率快,而溶解的同時會釋放鈣離子,使得材料具有誘骨性,但缺點硫酸鈣植入材吸收速率太快,使得骨細胞來不及長入缺陷,使纖維組織先行生成,阻礙骨組織生長而影響新生骨的生成。因此磷酸鈣和硫酸鈣混合後,利用硫酸鈣快速被吸收當作製造骨基質原料及產生空洞效果的特性,有利於新骨長入。
    本實驗選用75+25複合材和65+35複合材二種骨水泥複合材在生物體外做短時間及長時間的機械性質及其他物理性質之分析與探討。
    整題而言,複合材骨水泥在未來具有相當大的發展性。

    Abstract
    Calcium phosphate has excellent biocompatibility and adequate mechanical properties but has slow resorption in the human body.
    Without osteoinductive property, It has also shown osteoconductive and sustaining characterization . Calcium sulfate has also excellent biocompatibility.It is a kind of materials that will not cause inflammation and has fast resorption in human body. When calcium sulfate dissolved, the calcium ion was released that makes calcium phosphate composite with osteoinductive property. calcium sulfate implants has resorption quickly in the human body. It makes the fiber structure production advance, causes bone tissue to grow affects the newborn production. The absorpted calcium sulfate will be used as materials of bone matrix. It will make porous effect in composite. The newly formed bone integrates into the implant along with the pore and contacts directly with crystals of calcium phosphate.
    The present work is a study of 75 +25composite and 65 +35 composite soaking Hanks’ solution with short time and long time of mechanism, mechanical property and physical property in vitro.
    Composite has good biocompatibility.The composite has great potential for use as implant material.

    目錄 封面…………………………………………………………… Ⅰ 授權書………………………………………………………… Ⅱ 簽名單………………………………………………………… Ⅲ 中文摘要 Ⅳ Abstract Ⅴ 致謝 Ⅵ 第一章 總序論 1 1-1生醫植入材料分類及發展簡介 1 1-1-1生醫材料的定義 1 1-1-2生醫材料的分類 2 1-1-2-1材料的性質分類 2 1-1-2-2材料來源的分類 5 1-1-2-3材料的替代對象分類 6 1-1-2-4按材料及其製品與人體接觸程度分類 6 1-1-3生醫材料發展簡史 7 1-2生醫陶瓷的種類 11 1-3人體硬組織成分及性質簡介 16 1-4生醫骨科人工植入材料所需具備的條件 21 1-4-1骨取代物在生物學上的要求: 21 1-4-2骨取代材料性質與製程的要求 21 第二章 簡介與文獻回顧 23 2-1 半水硫酸鈣簡介 23 2-1-1半水硫酸鈣的發展回顧 23 2-1-2 半水硫酸鈣的性質、結構及反應過程 26 2-1-3半水硫酸鈣骨水泥的優點及缺點 27 2-2 磷酸鈣簡介 31 2-2-1磷酸鈣系列骨水泥發展 31 2-2-2磷酸鈣的性質、結構及反應過程 32 2-2-3雙相磷酸鈣骨水泥 35 2-2-磷酸鈣骨水泥的優點及缺點 36 Ca(OH)2 38 2-3磷酸鈣系與半水硫酸鈣系形成之多相複合生醫材料 41 2-3-1 HA / CaSO4・ 1/2H2O composite 42 2-3-2 α-TCP / CaSO4・ 1/2H2O composite 44 2-3-3 α-TCP / CaSO4・ 2H2O composite 46 2-3-4 TTCP / DCPA/CaSO4・ 1/2H2O composite 48 2-4骨水泥植入生物體內(in vivo)近期文獻回顧 55 第三章 實驗原理及步驟 60 3-1 實驗使用藥品 60 3-2 機械性質實驗步驟與分析方法 60 3-2-1 磷酸鈣與半水硫酸鈣複合材粉末製備 60 3-2-2 抗壓試片製作與強度測試 60 3-2-3 工作與硬化時間測量 61 3-2-4 PH值的量測 61 3-2-5 X-Ray diffraction (XRD)分析 63 3-2-6 Scanning Electron Microscopy(SEM)表面觀察 64 3-2-7細胞毒性測試 65 第四章 結果與討論 72 4-1 以solution1為硬化劑對75+25複合材性質之結果與討論: 72 4-1-1 以solution1為硬化劑對75+25複合材之浸泡Hanks’ solution一天後機械性質測量: 72 4-1-2 75+25複合材工作及硬化時間測量結果 74 4-2 以不同比例磷酸鈣鹽 和半水硫酸鈣複合材添加solution1間之浸泡Hanks’ solution一天後機械性質測量: 78 4-2-1 增加複合材半水硫酸鈣重量百分比添加solution1浸泡Hanks’ solution一天後機械性質測量: 79 4-3 以solution1為硬化劑對65+35複合材及60+40複合材性質之結果與討論: 82 4-3-1 以solution1為硬化劑對65+35複合材之浸泡Hanks’ solution一天後機械性質測量: 82 4-3-2 以solution1為硬化劑對60+40複合材之浸泡Hanks’ solution一天後機械性質測量: 84 4-3-3 65+35複合材工作及硬化時間測量結果 85 4-4複合材初始反應情況: 90 4-4-1初期骨水泥的PH值變化: 90 4-4-2 骨水泥的注射性: 90 4-4-3複合材浸泡Hanks’ solution短時間抗壓強度分析 91 4-5複合材長時間浸泡Hanks’ solution之結果討論與分析: 98 4-5-1 長時間抗壓強度分析: 98 4-5-2 XRD分析: 101 4-5-3 SEM 微觀結構分析: 103 4-5-4 浸泡Hanks’ solution不同時間之PH值變化比較: 104 4-6 細胞毒性測試 117 結論…………………………………………………………120 參考文獻…………………………………………………… 122

    A. L.Breed. Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop 102: 227-44, 1974.
    A.P.Pierson, D.Bigelow , M.Hamonic Bone grafting with boplant. Results in thirty-three cases. J Bone & Joint Surg 50(B): 364–368, 1968A.S. Myerson. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
    A.S.Myerson. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
    C.Gao, J Gao, X.You, S Huo, X Li, Y.Zhang, W.Zhang. Fabrication of calcium sulfate/PLLA composite for boneRepair. J Biomed Mater Res 73(A): 244-253, 2005.
    C. P.Klein, A. A. Driessen, K. de Groot, and A. van den Hooff, ‘‘Biodegradation Behavior of Various Calcium Phosphate Materials in Bone Tissue,’’ J. Biomed. Mater. Res., 17 [5] 769–784,1983.
    C.H.Tsai, R.M.Lin, C.P.Ju, J.H.Chern Lin. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Biomaterials 29984–993,2008.
    C.Vellmer,N.B.Singh,B.Middendorf.Chemisorption of carboxylic acids and the setting of hemihydrate pastes .Cement and Concrete Research,2004.
    carbonate by hydrothermal exchange, Nature 247: 220-222, 1974.
    C.W.Chen, C.P. Ju, J.H. Chern Lin. Variation in structure and properties of a non-dispersive TTCP/DCPA-derived calcium phosphate cement immersed in Hanks' solution. J Oral Rahab accepted.
    D. M.Roy, S. K. Linnehan, Hydroxyapatite formed from coral skeletal
    D.A.Nussbaum, Gailloud P, Murphy K The chemistry of acrylic bone cements and implications for clinical use in image-guided therapy. J Vasc Interv Radiol 15:121–126,2004.
    D.Barkoš, Soldán M, Hernández-Fuentes I. Hydroxyapatite -collagen -hyaluronic acid composite. Biomaterials 20: 191-195, 1999.

    D.C.Mears. Metals in medicine and surgery. International Metals Reviews June: 119-153, 1977.
    D.F.Wiliams.Review: tissue-biomaterial interaction. J Mat Sci;22:3421-3425,1987.
    D.E.Groot. Medical applications of calcium phosphate bioceramics.
    Japan;99:943-953,1991.
    E.P.Lautenschlager,P.MONAGHAN.Titanium and titanium alloys as dental materials.Internat Dent;43:245-253,1993.
    H.K.David., Metals in medical applications, Current Option
    H.Monma,M.Goto and T.Kohmura ,Gypsum &Lime,No.188,11-16(1984)
    H.Y Song,A.H.M. Esfakur Rahman,B.T. LeeFabrication of calcium phosphate-calcium sulfate injectable bone substitute using chitosan and citric acid, J Mater Sci: Mater Med 20:935–941,2009.
    Hydroxyapatite,’’ J. Mater. Sci. Mater. Med., 10 [3] 135–145 ,1999.
    in Solid State & Material Science 3: 309-316,1998.
    J. A.Skinner, P. O. Kroon, S. Todo, and G. Scott, ‘‘A Femoral Component with Proximal HA Coating. An Analysis of Survival and Fixation at up to Ten Years,’’ J. Bone Joint Surg. Br., 85 [3] 366–370 ,2003.
    J.Alberto. Ambard, DDS, MS;1 and Leonard Mueninghoff, DDS Calcium Phosphate Cement: Review of Mechanical and Biological Properties,J Prosthodont;15:321-328. Copyright C_ 2006 by The American College of Prosthodontists,2006.
    J.B.Park. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
    J.B.Park , JD Bronzino. Biomaterials principles and applications. CRC Press, New York, 2003.
    J.B. Park , JD Bronzino. Biomaterials principles and applications. CRC Press, New York, 2003.
    K.Anselme, ‘‘Osteoblast Adhesion on Biomaterials,’’ Biomaterials, 21 668–680 ,2000.
    K.N.Lewis , M.V.Thomas ,D.A.Puleo; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 17: 531–537,2006,
    K.Soballe, H.Brockstedt-Rasmussen, E S.Hansen, and C.Bunger, ‘‘Hydroxyapatite Coating Modifies Implant Membrane Formation. Controlled Micromotion Studied in Dogs,’’ Acta Orthop. Scand., 63 [2]128–140,1992.
    K.Soballe, H.Brockstedt-Rasmussen, E.S.Hansen, and C.Bunger, ‘‘Hydroxyapatite Coating Modifies Implant Membrane Formation. Controlled Micromotion Studied in Dogs,’’ Acta Orthop. Scand., 63 [2]128–140 ,1992.
    K.H.Rateitschak, H.F.Wolf . Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
    K.Soballe.Hydroxyapatite ceramic coating for bone implant fixation.ACTA Orthopaed Scandin Supplem;64:1-58,1993.
    L .Peltier, The use of plaster of Paris to fill large defects in bone. Am J Surg 97:311-315, 1959
    L.Leroux, Z.Hatim, M.Fre`che , J.L.Lacout . Effects of various adjutants (lactic acid, glycerol, and chitosan) on the injectability of calcium phosphate cement. Bone;25:31S–34S,1999.
    L.Amathieu, R Boistelle, Crystal Growth 79: 169, 1986.
    L.Smith, ‘‘Ceramic–Plastic Material as a Bone Substitute,’’ Arch Surg., 87 653–661 ,1963.
    L.Amathieu and R.Boistelle "Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth 88: 184,1988.
    L.C.Chow ; CALCIUM PHOSPHATE MATERIALS:REACTOR RESPONSE ; Adv Dent Res 2(1):181-184, August, 1988,
    L.CChow. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue;99(10):954-964,1991.
    L.L.Hench,Bioceramics: from concept to clinic. J Am Ceram Soc;74:1487-1510,1991.
    M.Sidqui , P.Collin , C.Vitte : Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327-1332; 1995.
    M.Bohner and F.Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 [17] 3569–3582 ,2004.
    M.Bohner, New hydraulic cements based on a-tricalcium phosphate–calcium sulfate dihydrate mixtures; Biomaterials 25 741–749,2004.
    M.Bohner, U. Gbureck, J.E. BarraletTechnological issues for the development of more efficient calcium phosphate bone cements: A critical assessmentBiomaterials 26 6423–6429,2005.
    M.Jarcho: Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res;157:259-278,1981.
    M Nilsson, E. Ferna´ndez, S. Sarda,1L. Lidgren, J. A. Planell. Characterization of a novel calcium phosphate/sulphate bone cement. J Biomed Mater Res 61: 600–607, 2002.
    M Nilsson, L. Wielanek, J.S. Wang, K. E. Tanner, L. Lidgren. Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement. Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
    M.Bohner.Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured;31:S-D37-47,2000.
    M.E. Tadros, I. Mayes, J. Colloid. Interface Sci. 72: 245, 1979.
    M.Kon,K.Asaoka.tissue response to fast-setting calcium phosphate cement in bone .J Biomed Mater Res;37:457-464,1997.
    M.P.C Weijnen, G.M. van Rosmalen, Desalination 54: 239, 1985.
    P. K.Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke, and C. J. Pirie, ‘‘The Effect of Hydroxyapatite Coating on Ingrowth of BoneInto Cavities in an Implant,’’ J. Arthroplasty, 6 [1] 51–58, 1991.
    P.D.Costantino , C.D. Friedman: Synthetic bone graft substitutes. Otolaryngol Clin North Am;27:1037-1074,1994.
    R. E. Holmes, ‘‘Bone Regeneration Within a Coralline Hydroxyapatite Implant,’’ Plast. Reconstr. Surg., 63 [5] 626–633 ,1979.
    S.F.Hulbert, F.A.Young, R.S.Mathews, J.J.Klawitter, C.D.Talbert, and F. H.Stelling, ‘‘Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses,’’ J. Biomed. Mater. Res., 4 [3] 433–456 ,1970.
    S.F.Hulbert, S.J.Morrison, and J.J.Klawitter, ‘‘Tissue Reaction to Three Ceramics of Porous and Non-Porous Structures,’’ J. Biomed. Mater. Res., 6[5] 347–374,1972,
    S. Sarda, E.Fernández, M.Nilsson, M.Balcells, J. A. Planell. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. J Biomed Mater Res 61: 653–659, 2002.
    S.F.Hulbert, J.C.Bokros, L.L.Hench,Wilson J,G.Heimke.T.Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
    S.F.Hulbert,L.L.Hench,D.F.orbers,L.S.Bowman.History of bioceramics. Ceram Internat.;8:131-140,1982.
    T. Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of the Ceramic Society of Japan 99: 965-973, 1991.
    them, and method for their production ,US patent 6013591, 2000.
    W.C.Chen, C.P. Ju, Y.C. Tien, J.H.Chern Lin. In vivo testing of nanoparticle-treated TTCP/DCPA-based ceramic surfaces. Acta Biomaterialia,2009.
    W.R. Moore, S.E. Graves, G.I. Bain. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
    Y. Fukase, E.D. EANES', S. TAKAGI3, L.C. CHOW, and W.E. BROWN;Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
    Y.Miyamoto,K.Ishikawa,M.Takechi,T.Toh,Y.Yoshida,M.Nagayama,
    Ying. Nanocrystalline apatites and composite prostheses incorporating

    無法下載圖示 校內:2108-07-29公開
    校外:2108-07-29公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE