| 研究生: |
喻宏晏 Yu, Hung-Yen |
|---|---|
| 論文名稱: |
曾文溪尖山堤防堤體土壤抗液化強度之研究 Investigating the Soil Liquefaction Resistance of the Soils in the Chien-Shan Embankment at the Tseng-Wen River |
| 指導教授: |
吳建宏
Wu, Jian-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 液化 、動態三軸試驗 、相對密度 、細粒料 、高嶺土 |
| 外文關鍵詞: | Liquefaction, Cyclic triaxial test, Relative density, Fine content, Kaolinite |
| 相關次數: | 點閱:78 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採集曾文溪近南182縣道二溪大橋下之尖山堤防河灘地土壤,經由相對密度試驗的結果做為試體重模之基準,並以不同配比設計之試體,包括相對密度、添加不同含量之高嶺土與篩除細粒料的方式進行動態三軸試驗,以求得不同設計條件下的土壤反覆應力比。
依據動態三軸試驗結果顯示,統一土壤分類為粉土質砂的尖山堤防現地土壤在相對密度分別為33%、50%、66%時,試體的反覆阻抗比隨著相對密度提高而上昇,並且當試體相對密度為緊密時,其受反覆加載時試體的變形行為與疏鬆、中等緊密砂土不相同,為反覆流動變形的形式,起因是由於受加載時,其應力路徑不會向臨界狀態線(Critical state line)移動,造成發生液化的機制不相同。
將現地土壤中的細粒料去除後進行動態三軸試驗,結果顯示乾淨砂試體與相同乾密度之現地土壤試體比較,反覆阻抗比僅下降6%,其影響不大,結果可能是因現地土壤中細粒料含量僅占16%,而現地土壤與乾淨砂之砂顆粒結構差異不大所致。
細粒料含量25%左右的10%高嶺土重量取代之混合土壤有最小的反覆阻抗比,而20%與40%高嶺土重量取代之混合土壤之反覆阻抗比隨其含量而上昇;將10%、20%、40%高嶺土重量取代混合土壤之塑性性質於塑性圖表做圖,此三種土壤分別具有類砂土、過渡階段、類黏土之土壤動態性質;並且高嶺土取代之試體,其反覆阻抗比皆低於相同乾密度之現地土壤試體。
In this study, alluvial soils of Chien-Shan Embankment at Tseng-Wen River are collected as samples of test and remolded as separated specimens, also the specimens are divided into three different groups, such as different relative densities, different amount of kaolinite is added and removing all the fine content from the raw soils, each kind of specimen are conducted with cyclic triaxial test in order to yield the cyclic resistance ratio of different soils.
The test results indicate while the relative density of soil of Chien-Shan Embankment increased between 33% and 66%, the cyclic resistance ratio increased with relative density. Also, the behavior of deformation of dense soil differs from loose and medium soils, with the form of cyclic mobility, and the reason of the result is controlled by the stress path.
The test results of removing all the fine content from soils as clean sand yielded the similar consequence as the in-situ soil of the same dry density, the result could be interpreted as the similar skeleton structure of same yields the similar result.
In kaolinite substituted specimens, 10%, 20% and 40% weight of specimen in the same dry density for the test, the in-situ soil with 10% kaolinite yields the lowest cyclic resistance ratio, and the behaviors of deformation and excess pore pressure increase are similar to sandy soil; the in-situ soils with 20% and 40% kaolinite embody with the same behavior with clayey soils.
1. 中央地質調查所(http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm),2018
2. 中央氣象局(https://www.cwb.gov.tw/V7/earthquake/rtd_eq.htm),2016
3. 國家災害防救科技中心,0206地震災情彙整與實地調查報告(https://www.ncdr.nat.gov.tw/Files/Earthquake/0206/0206%E5%9C%B0%E9%9C%87%E7%81%BD%E6%83%85%E5%BD%99%E6%95%B4%E8%88%87%E5%AF%A6%E5%9C%B0%E8%AA%BF%E6%9F%A5%E5%A0%B1%E5%91%8A.pdf),2016
4. 古志生、馬正明、李德河、吳建宏,「美濃地震後台南液化區初步調查及潛在災害區處理對策」,地工技術,第148期,59-70頁,2016
5. 吳茂成、蔡長泰、邱勤庭等,「大河的故事9─曾文溪:戀戀母河」,時報文化,臺北市,台灣,2001
6. 吳柏翰,「曾文溪日新護岸堤體土壤抗液化強度之研究」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2017
7. 柯子昭,「麥寮砂之液化阻抗與體積應變特性之研究」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2004
8. 倪勝火,「美濃地震引致曾文溪大內堤防設施災害調查」,地工技術,第148期,71-80頁,2016
9. 孫家雯,「砂土細料界定對液化強度之影響」,國立台灣大學土木工程研究所,碩士論文,台北,台灣,2003
10. 陳文山等,「臺灣地質概論 : 比例尺四十萬分一臺灣地質圖說明書」,中華民國地質學會,臺北市,台灣,2016
11. 游家豪,「低塑性細料對粉質砂土動態性質之影響」,國立成功大學土木工程研究所,碩士論文,台南,台灣,2007
12. Ambraseys, N. N., “Engineering Seismology”, Earthquake Engineering and Structural Dynamics, Vol. 17, pp. 1-105, 1988
13. ASTM D5311M-13, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, 2013
14. Baldi, G. & Nova, R., “Membrane Penetration Effects in Triaxial Testing”, Journal of Geotechnical Engineering, Vol. 110, No. 3, pp. 403-420, 1984
15. Boulanger, R. W. & Idriss, I. M., “Liquefaction Susceptibility Criteria for Silts and Clays”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 11, pp. 1413-1426, 2006
16. Casagrande, A., “Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics (1925–1940), the Boston Society of Civil Engineers, 1948, pp. 257–276, 1936
17. Casagrande, A., “Liquefaction and Cyclic Deformation of Sands, a Critical Review”, Harvard Soil Mechanics Series No. 88, Harvard University, Cambridge, 1975
18. Castro, G. & Poulos, S. J., “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 103, No. GT6, pp. 501-516, 1977
19. El Hosri, M. S., Briarez, H. & Hicher, P. Y., “Liquefaction Characteristics of Silty Clay”, Proceedings 8th World Conference on Earthquake Engineering, Prentice-Hall, Eaglewood Cliffs, New Jersey, pp. 277-284, 1984
20. Galli, P., “New Empirical Relationships between Magnitude and Distance for Liquefaction”, Tectonophysics, Vol. 324, pp. 169-187, 2000
21. Guo, T. & Prakash, S., “Liquefaction of Silts and Silt-clay Mixtures”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 8, pp. 706-710
22. Huang, A., Chang, W., Hsu, H. & Huang, Y., “A Mist Pluviation Method for Reconstituting Silty Sand Specimens”, Engineering Geology, Vol. 188, pp. 1-9, 2015
23. Ishihara, K., “Stability of Natural Deposits During Earthquakes”, Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, Vol. 2, 321-376, 1985
24. Ishihara, K. & Yoshimine, M. “Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquakes”, Soils and Foundations, Vol. 32, Issue 1, pp. 173-188, 1992
25. Koester, J. P. & Tsuchida, T., “Earthquake Induced Liquefaction of Fine-grained Soils-Considerations from Japanese Research”, Department of the Army US Army Corps of Engineers, Washington, DC, USA, 1988
26. Kokusho, T., Yoshida, Y. & Esashi, Y., “Evaluation of Seismic Stability of Dense Sand Layer (Part 1) -Dynamics Strength Characteristic of Dense Sand-”, Research Report No. 383025, Central Research Institute of Electric Power Industry, Japan, 1983
27. Krishnaswamy, N. R. & Issac, N. T., “Liquefaction Potential of Reinforced Sand”, Geotextiles and Geomembranes, Vol. 13, pp. 23-41, 1994
28. Lade, P. V. & Hernandez, S. B., “Membrane Penetration Effects in Undrained Teats”, Journal of the Geotechnical Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 103, No. GT2, pp. 109-125, 1977
29. Maurer, B. W., Green, R. A., Cubrinovski, M. & Bradley, B. A., “Evaluation of the Liquefaction Potential Index for Assessing Liquefaction Hazard in Christchurch, New Zealand”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 140, No.7, 04014032, 2014
30. Miura, S. & Kawamura, S., “A Procedure Minimizing Membrane Penetration Effects in Undrained Triaxial Test”, Soils and Foundations, Vol. 36, No. 4, pp. 119-126, 1996
31. Miura, S. & Toki, S., “A Sample Preparation Method and Its Effect on Static and Cyclic Deformation-Strength Properties of Sand”, Soils and Foundations, Vol. 22, No. 1, pp. 61-77, 1982
32. Molenkamp, F. & Luger, H. J., “Modelling and Minimization of Membrane Penetration Effects in Tests on Granular Soils”, Géotechnique, Vol. 31, No. 4, pp. 471-486, 1981
33. Mominul, H.M., Alam, M.J., Ansary, M.A. & Karim M.E., “Dynamic Properties and Liquefaction Potential of a Sandy Soil Containing Silt”, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, 2013
34. Obermeier, S.F., Olson, S. and Green, R., “Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking”. Engineering Geology, Vol. 76, pp. 209-234, 2005
35. Ohsaki, Y., “Niigata Earthquake, 1964, Building Damage and Soil Conditions,” Soil and Foundations, Vol. 6, No. 2, pp. 14-37, 1966.
36. Orense, R. P., Kiyota, T., Yamada, S., Cubrinovski, M., Hosono, Y., Okamura, M. & Yasuda, S., “Comparison of Liquefaction Features Observed during the 2010 and 2011 Canterbury Earthquakes”, Seismological Research Letters, Vol. 82, No. 6, pp. 905-918, 2011
37. Polito, C. P. & Martin II, J. R., “Effects of Non-plastic Fines on the Liquefaction Resistance of Sands”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, Issue 5, pp. 408-415, 2001
38. Prakash S. & Sandoval J. A., “Liquefaction of Low Plasticity Silts”, Soil Dynamics and Earthquake engineering, Vol. 11, pp. 373-379, 1992
39. Puri, V. K., “Liquefaction Behavior and Dynamics Properties of Loessial(silty) soils”, PhD Thesis, University of Missouri-Rolla, Mo., USA, 1984
40. Raghunandan, M., Juneja, A. & Hsiung, B., “Preparation of Reconstituted Sand Samples in the Laboratory”, International Journal of Geotechnical Engineering, Vol. 6, Issue 1, pp. 125-131, 2012
41. Sandoval, J., “Liquefaction and Settlement Characteristics of Silty Soil”, PhD Thesis, University of Missouri-Rolla, Mo., USA, 1989
42. Seed, H.B., Arango, I., & Chan, C.K. “ Evaluation of soil liquefaction potential for level ground during earthquakes A summary report”, NUREG—0026, United States, 1975
43. Seed, H. B. & Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and foundations Division, ASCE, Vol. 97, No. 9, pp. 1249- 1273, 1971
44. Seed, H. B., Idriss, I. M., Makadisi, F. & Banerjee, N., "Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses", Report No. EERC 75-29, Earthquake Engineering Research Center, University of California, Berkeley, 1975
45. Seed, H. B. & Lee, K. L., “Liquefaction of Saturated Sands during Cyclic Loading”, Journal of the Soil Mechanics and Foundation Division, Vol. 92, No. 6, pp. 105-134, 1966
46. Seed, H. B. & Peacock, W. H., “Test Procedures for Measuring Soil Liquefaction Characteristics”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 97 , No. 8, pp. 1099-1119, 1971
47. Seed, H. B., Tokimatsu, K., Harder, L. F. & Chung, R. M., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations”, Journal of Geotechnical and Engineering, Vol. 111, pp. 1425-1445, 1985
48. Thevanayagam, S., Fiorillo, M. & Liang, J., “Effect of Non-plastic Fines on Undrained Cyclic Strength of Silty Sands”, Geotechnical Special Publication, No. 107, pp. 77-91, 2000
49. Tokimatsu K. & Yoshimi Y., “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fine Content”, Soils and Foundations, Vol. 23, No. 4, pp. 56-74, 1983
50. Tsuchida, H., “Prediction and Countermeasure against Liquefaction in Sand Deposits”, Abstract of the Seminar of the Port and Harbour Research Institute, Ministry of Transport, Yokosuka, Japan, 1970
51. Vaid, Y. P., Burne, P. M. & Hughes, J. M. O., “Dilation Angle and Liquefaction Potential”, International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, pp, 161-165 St. Louis, Misouri, 1981
52. Yamamuro J. A. & Lade P. V., “Experiments and modelling of silty sands susceptible to static liquefaction”, Mechanics of Cohesive-fictional Materials, Vol. 4, Issue 6, pp. 545-564, 1999
53. Youd, T. L. & Idriss, I.M., “Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 4, pp. 297-313, 2001