| 研究生: |
張簡振甫 Chjen, Chen-Fu Chang |
|---|---|
| 論文名稱: |
磁場與濃度對於錫鉛合金方向性凝固的影響 Effects of Magnetic field and Concentration on the Directional Solidification of Pb-Sn alloys |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 方向性凝固 、錫-鉛合金 、金相學 、磁場 |
| 外文關鍵詞: | directional solidification, lead-tin alloy, metallography, magnetic field |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝固為相當重要之材料製程技術。材料的微觀組織會在凝固過程,決定各項性質之優劣,故凝固學為重要的研究領域。
方向性凝固,又稱定向凝固,對於金屬材料,就是人為地控制融熔金屬的結晶生長方向,以獲得結晶方向相近的柱狀晶,甚至單晶結構的凝固方法。電磁凝固是以電場或磁場控制凝固過程,為較新的研究領域。
本研究以錫-鉛合金不同濃度及磁場為研究材料,錫-鉛合金系統是典型的共晶系統,共晶系統中,加入另一成分金屬,熔點會降低,液相線經過最低溫度點成為共晶點。
鉛的濃度越高時,晶粒尺寸小,鉛的濃度越低,晶粒尺寸大。施加線性相斥磁場,中間的部分晶粒尺寸小,邊緣的部分晶粒尺寸大。施加線性相吸磁場,中間的部分晶粒尺寸大,邊緣的部分晶粒尺寸小。
本研究主要之研究方法有巨觀金相組織與微觀金相組織觀察。根據實驗結果,在不同磁場作用與濃度下凝固確實會影響材料的微結構。
Solidification is an important technique in material manufacturing. Solidification affects the morphology control of microstructures, which directly influence all properties.
The directional solidification process enables grain orientation to put in order along a specific direction. This process would decrease grain boundary (G.B.), which could improve mechanical properties of materials.The electromagnetic solidification process means the solidification process with the magnetic field or electric fields.
In our study of directional solidification, lead-tin alloy is used as the casting material with different initial concentrations and magnetic fields. To analyse the solidification processes, we used metallographic observation, including macrostructure, microstructure, and calculate average grain size. The metallographic procedures are cutting specimen, specimen mounting, abrasive grinding, polishing, etching and microscopy. We observe macrostructure by eyes and ruler, observe the microstructure by optical microscope, and calculate the average grain size in lateral morphology.
We find that when the concentration of lead is smaller, the grain boundary is more difficult to observe. The bottom of casting sample is the chill zone. The middle of casting sample is the columnar zone. The top of casting sample is the air-affected zone. Each case has different sizes in three regions with different concentrations of lead and magnetic fields. Chill zone are small equiaxed grains. Columnar zone are columnar grains. Air-affected zone are large equiaxed grains. When we put magnet attraction in linear magnetic field, we can find out large grain size in the middle,small grain size in the edge. When we put magnet repulsion in linear magnetic field, we can find out small grain size in the middle, large grain size in the edge. According to the experimental results, the concentration of lead and the magnetic field actually influences the material microstructures of directional solidification.
[1] D. Askeland, P. Fulay, and W. Wright, The science and engineering of materials: Cengage Learning, 2011.
[2] W. Kurz and D. J. Fisher, Fundamentals of Solidification: Trans Tech Publications, Limited, 1989.
[3] 李魁盛, "鑄造工藝設計基礎," 機械工業出版社, 1981.
[4] 陸文華, 鑄鐵及其熔煉: 機械工業出版社, 1981.
[5] W. F. Smith and J. Hashemi, Foundations of materials science and engineering: Mcgraw-Hill Publishing, 2006.
[6] W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach: John Wiley & Sons, 2012.
[7] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles: SI Edition: Cengage Learning, 2010.
[8] E. Hall, "The deformation and ageing of mild steel: III discussion of results," Proceedings of the Physical Society. Section B, vol. 64, p. 747, 1951.
[9] N. J. Petch, "The Cleavage Strength of Polycrystals," J. Iron Steel Inst. London, pp. 25–28, 1953.
[10] M. Rettenmayer and H. E. Exner, Directional Solidification Materials Science and Technology, 2001.
[11] 範曉明, 金屬凝固理論與技術: 武漢理工大學出版社, 2012.
[12] 孫延輝, "穩恒強磁場對Al-4.5%Cu合金定向凝固行為影響的研究," 2005.
[13] 楊榮顯, "機械材料," 逢甲書局, pp404-415, 1986.
[14] F. N. Rhines, Phase diagrams in metallurgy: their development and application: McGraw-Hill Companies, 1956.
[15] 何廣福, "方向性凝固之研究," 成功大學工程科學系碩博士班學位論文, pp. 1-130, 2005.
[16] 趙國傑, "凝固參數對於方向性成長之結構參數影響分析," 成功大學工程科學系碩博士班學位論文, pp. 1-179, 2007.
[17] 吳俐潔, "以方向性凝固製備錫鉛合金之不同參數對其凝固結構之影響分析," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2013.
[18] 吳怡凡, "磁場作用下錫鉛合金方向性凝固之研究," 碩士, 工程科學系碩博士班, 國立成功大學, 台南市, 2015
[19] 吳怡凡, and 趙隆山. "磁場作用下錫鉛合金方向性凝固之研究." 鑄造工程學刊42.2 (2016): 1-10.
[20] 林五祥. "熱與溶質效應對於錫鉛合金方向性凝固之影響分析." 成功大學工程科學系學位論文 (2006): 1-151.
[21] 趙隆山, 陳毓儒, and 林五祥. "初始濃度於錫鉛合金方向性凝固之影響分析." 鑄造工程學刊 33.2 (2007): 54-62.
[22] Chao, Long‐Sun, et al. "Experimental analysis on the effect of initial concentration in the direction solidification of Sn‐Pb alloy." Journal of the Chinese Institute of Engineers 31.5 (2008): 729-735.
[23] 壯. 胡. 周堯和, 介萬奇, 凝固技術: 機械工業出版社, 1998.
[24] F. VerSnyder and R. Guard, "Directional grain structure for high temperature strength," Trans. ASM, vol. 52, p. 485, 1960.
[25] F. Versnyder, R. Hehemann, and G. M. Ault, "High Temperature Materials," ed: Wiley-Interscience, New York, 1959.
[26] H. Fisher and J. Walter, "Control of Crystal Orientation in Silicon-Iron Ingots," TRANSACTIONS OF THE METALLURGICAL SOCIETY OF AIME, vol. 224, pp. 1271-&, 1962.
[27] J. L. Walter, "Method for casting and working grain oriented ingots," ed: Google Patents, 1960.
[28] D .G. McCartney and a. J. D. Hunt, "Measurements of Cell and Primary Dendrite Arm Spacings in Directionally Solidified Aluminum Alloys," Acta Metallurgica, vol. 29, pp. 1851-1863, 1981.
[29] C. M. Klaren , J. D. Verhoeven and R. Trivedi, "Primary Dendrite Spacing of Lead Dendrite in Pb-Sn and Pb-Au Alloys," Metallurgical Transcatons 11A, vol. 11, pp. 1853-1861, 1980.
[30] O. L. Rocha, C. A. Siqueira, and A. Garcia, "Cellular spacings in unsteady-state directionally solidified Sn–Pb alloys," Materials Science and Engineering: A, vol. 361, pp. 111-118, 2003.
[31] C. A. Siqueira, N. Cheung, and A. Garcia, "The columnar to equiaxed transition during solidification of Sn–Pb alloys," Journal of Alloys and Compounds, vol. 351, pp. 126-134, 2003.
[32] J. E. Spinelli , I. L. Ferreira and A. Garcia,, "Influence of Melt Convection on the Columnar to Equiaxed Transition and Microstructure of Downward Unsteady-State Directionally Solidified Sn-Pb Alloys," Journal of Alloys and Compounds 384, vol. 384, pp. 217-226, 2004.
[33] E. Cadirli and M. Gündüz, "The directional solidification of Pb-Sn alloys," Journal of materials science, vol. 35, pp. 3837-3848, 2000.
[34] Fernando sa , Otavio Lima Rocha, Claudio Alves Siqueira and Amauri Garcia, "The Effect of Solidification Variables on Teriary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys," Materials Science Engineering A, vol. 373, pp. 131-138, 2004.
[35] D. Uhlmann, T. SEWARD, and B. Chalmers, "The effect of magnetic fields on the structure of metal alloy castings," AIME MET SOC TRANS, vol. 236, pp. 527-531, 1966.
[36] T. Kozuka, T. Yuhara, I. Muchi, and S. Asai, "Shape control of molten metal by electromagnetic force in a twin roll casting process," ISIJ International, vol. 29, pp. 1022-1030, 1989.
[37] Y. Kishida, K. Takeda, I. Miyoshino, and E. Takeuchi, "Anisotropic effect of magnetohydrodynamics on metal solidification," 1990.
[38] S. N. Tewari, R. Shah, and H. Song, "Effect of magnetic field on the microstructure and macrosegregation in directionally solidified Pb-Sn alloys," Metallurgical and materials transactions A, vol. 25, pp. 1535-1544, 1994.
[39] M. Nakada, K. Mori, S.-I. Nishioka, K. Tsutsumi, H. Murakami, and Y. Tsuchida, "Reduction of macrosegregation by applying a DC magnetic field at the final stage of solidification," ISIJ international, vol. 37, pp. 358-364, 1997.
[40] 劉晴, 肖荔, 時海芳, and 張偉強, "熱電磁流體動力學對Al-4.5Cu合金定向凝固組織的影響," 鑄造技術, vol. 23, p. 2, 2002.
[41] 黃于軒, "應用磁場於熔融金屬流速控制之研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2000.
[42] 林上瑜, "應用旋轉磁場於熔融金屬攪拌之研究," 碩士, 動力機械工程學系, 國立清華大學, 新竹市, 2001.
[43] 張家彰, "半固態電磁攪拌AZ91D鎂合金製程之研究," 碩士, 材料科學及工程學系碩博士班, 國立成功大學, 台南市, 2010.
[44] 陳學民, "電磁場作用下薄鋼胚連鑄模內部流場分析之數值模擬研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2014.
[45] 林盈佐, "凝固顯微組織與模式分析," 國立成功大學工程科學所碩士論文, 1998.
[46] 林樹均, 葉均蔚, 劉增豐, and 李聖隆, "材料工程實驗及原理," 初版, 全華科技圖書有限公司, pp. 111-122, 1990.
[47] P. Jain, Principles of foundry technology: Tata McGraw-Hill Education, 2003.
[48] B. Cantor and K. O'Reilly, Solidification and Casting: Taylor & Francis, 2002.
[49] 蔡淑娟, 鑄造學名詞辭典: 名山, 1982.
[50] E. P. DeGarmo, J. T. Black, and R. A. Kohser, Materials and Processes in Manufacturing: Wiley, 2002.
[51] T. B. Massalski, H. Okamoto, P. Subramanian, and L. Kacprzak, Binary alloy phase diagrams: ASM international, 1990.
[52] D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys, Third Edition (Revised Reprint): Taylor & Francis, 2009.
[53] A. S. f. Metals, Liquid metals and solidification: a seminar on liquid metals and solidification held during the thirty-ninth National Metal Congress and Exposition, Chicago, November 2 to 8, 1957: American Society for Metals, 1958.
[54] W. Losert, B. Shi, and H. Cummins, "Evolution of dendritic patterns during alloy solidification: Onset of the initial instability," Proceedings of the National Academy of Sciences, vol. 95, pp. 431-438, 1998.
[55] 屈淑維, "穩恒磁場及直流電場對鋁硅合金凝固過程及組織性能的影響研究," 碩士, 中北大学, 2009.
[56] 王巖, "樹枝晶前沿熱電磁流體動力學效應的研究," 碩士, 遼寧工程技術大學, 2009.
[57] D. J. Griffiths, Introduction to Electrodynamics: Pearson, 2013.
[58] 張偉強, "金屬電磁凝固原理與技術· JtV," ed: 冶金工業出版社.
[59] I. Kaldre, Y. Fautrelle, J. Etay, A. Bojarevics, and L. Buligins, "Thermoelectric current and magnetic field interaction influence on the structure of directionally solidified Sn–10wt.% Pb alloy," Journal of Alloys and Compounds, vol. 571, pp. 50-55, 2013.
[60] R. Moreau, O. Laskar, M. Tanaka, and D. Camel, "Thermoelectric magnetohydrodynamic effects on solidification of metallic alloys in the dendritic regime," Materials Science and Engineering: A, vol. 173, pp. 93-100, 12/20/ 1993.
[61] D. M. Rowe, CRC Handbook of Thermoelectrics: Taylor & Francis, 1995.
[62] O. Laskar, "Phénomènes thermoélectriques et magnétohydrodynamiques en solidification des alliages métalliques," Ph.D, Institut National Polytechnique de Grenoble, 1994.
[63] P. Lehmann, R. Moreau, D. Camel, and R. Bolcato, "Modification of interdendritic convection in directional solidification by a uniform magnetic field," Acta Materialia, vol. 46, pp. 4067-4079, 7/1/ 1998.
[64] B. Li, "Solidification processing of materials in magnetic fields," JOM-e, vol. 50, pp. 1-10, 1998.
[65] 任忠鳴, "強磁場下金屬凝固研究進展," 中國材料進展, vol. 29, 2010.
[66] 倪明玖, "磁約束核聚變反應堆研發相關的金屬流體力學問題研究," 中國科學: 物理學, 力學, 天文學, pp. 1570-1578, 2013.
[67] S. J. A., "Steady motion of conducting fluids in pipes under transverse magnetic fields," Proc Cambridge Philosophical Soci, 1953.
[68] 韋孟育, 材料實驗方法-金相分析技術: 全華科技圖書股份有限公司, 1990
[69] BUEHLER SUM-MET – The Science Behind Materials Preparation, BUEHLER LTD, 2007.
[70] Zipperian, Donald C. "Metallographic handbook." PACE Technologies Tucson, Arizona USA (2011).
[71] 洪敏雄主編, “工程材料實驗(I)-金屬材料實驗”, 中國材料科學學會,1999.
[72] 手動金相製備訓練班-金屬材料,汎達科技有限公司
[73] 手動微切片製備訓練班-電子材料,汎達科技有限公司
[74] 金相前處理設備及耗材,三朋儀器股份有限公司
[75] J. S. Basi, "Silicon wafer polishing," ed: Google Patents, 1977.
[76] 包. E, 柴海威拉阿南, 查澤爾阿蒙, "一種黏結矽部件專用的矽和氧化矽複合黏結劑," ed: Google Patents, 2006.
[77] ASTM E407-99, Standard Practice for Microetching Metals and Alloys.
[78] 馬振基. "奈米材料科技原理與應用." 全華科技出版社, 2003.