| 研究生: |
何宗穎 He, Zong-Ying |
|---|---|
| 論文名稱: |
透過 Twyman-Green 干涉儀中的干涉圖分析評估液晶透鏡的球面像差 Evaluating Spherical Aberration of Liquid Crystal Lenses via Interferogram Analyses in Twyman-Green Interferometer |
| 指導教授: |
許家榮
Sheu, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 液晶透鏡 、光學測試 、Twyman-Green干涉儀 、球面像差 |
| 外文關鍵詞: | Liquid crystal lens, optical testing, Twyman-Green interferometer, spherical aberration |
| 相關次數: | 點閱:23 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Twyman-Green干涉儀對於電控調制焦距之液晶透鏡進行其球面像差表現之評估,並與玻璃透鏡的結果做比對。
若待測物無像差,其Twyman-Green干涉圖應為整面無干涉條紋的狀況,而藉由比較Twyman-Green干涉圖後得知:玻璃透鏡本研究量測系統中像差幾乎可以忽略。而本實驗室製作之圓孔型電極液晶透鏡(Hole-Patterned Electrode Liquid Crystal Lens, HPELCLs)則是在不同電壓下有不同程度的球面像差。
為了明確比較液晶透鏡與玻璃透鏡的球面像差,本研究亦將兩者放入Mach-Zehnder干涉儀觀測其菲涅爾區圖案,發現無球面像差的玻璃透鏡可觀察到菲涅爾區圖案,而有球面像差的液晶透鏡則不行。
為了解液晶透鏡球面像差問題,本研究提出利用觀察Twyman-Green干涉圖並使用光圈限縮入射光照射在液晶透鏡的面積,選出無球面像差的區域。利用此方法,成功紀錄了4 mm、3 mm和2 mm圓孔孔徑液晶透鏡的菲涅爾區圖案。
This research presents an optical evaluation of spherical aberration in Hole-Patterned Electrode Liquid Crystal Lenses (HPELCLs) through interferogram analysis using a Twyman-Green interferometer. This study investigates the optical characteristics of electrically tunable liquid crystal lenses, with an emphasis on comparing their spherical aberration to that of traditional glass lenses. Through Twyman-Green interferogram and Fresnel zone pattern observations, we provide a comprehensive framework for identifying and mitigating spherical aberrations in HPELCLs.
Initial interferometric analyses revealed that the glass lenses introduced negligible aberration under experimental conditions. In contrast, HPELCLs demonstrated various degrees of spherical aberration depending on the applied voltage. To resolve this problem, we developed a methodology to decide aberration-free regions within the liquid crystal lens aperture by using iris of varying diameters. Through this method, regions of HPELCLs with relatively uniform refractive index gradients were selected, allowing the successful recording of Fresnel zone patterns.
By selectively illuminating aberration-free regions, we successfully generated Fresnel zone patterns with single HPELCLs, previously unachievable without the aid of conventional lenses. These findings contribute to the broader understanding of tunable liquid crystal optics and open pathways for developing high-performance electro-optical devices using compact and adaptive lens systems.
[1] H. Kawamoto, “The history of liquid-crystal displays,” Proceedings of the IEEE, 90(4), 460-500. (2002)
[2] Chih-Ta Yen, Yi-Chin Fang, Chen-Mu Tsai, “A study of blue-ray pickup head optical system with liquid crystal optics module,” Proc. SPIE, 8172, Optical Complex Systems: OCS11, 817211. (2011)
[3] Lin HC, Collings N, Chen MS, et al. “A holographic projection system with an electrically tuning and continuously adjustable optical zoom,” Opt. Express.20, 27222–27229. (2012)
[4] Susumu Sato, “Liquid-Crystal Lens-Cells with Variable Focal Length,” Jpn. J. Appl. Phys. 18(9), 1679-1684. (1979)
[5] S. Sato, “Applications of Liquid Crystals to Variable-Focusing Lenses,” OPTICAL REVIEW, 6(6), 471–485. (1999)
[6] Bin Wang, Mao Ye and Susumu Sato, “Liquid crystal lens with focal length variable from negative to positive values,” IEEE Photonics Technology Letters, 18(1), 79-81. (2006)
[7] Mao Ye, Bin Wang, and Susumu Sato, “Liquid-crystal lens with a focal length that is variable in a wide range,” Appl. Opt. 43, 6407-6412 (2004)
[8] Wenbin Feng, Zhiqiang Liu, and Mao Ye, “Liquid crystal lens with a shiftable optical axis,” Opt. Express 31, 15523-15536 (2023)
[9] Bennis, N., Jankowski, T., Strzezysz, O., J. F. Algorri, et al. “A high birefringence liquid crystal for lenses with large aperture,” Sci Rep 12, 14603 (2022)
[10] Łukasz Gorajek, Przemysław Gontar, and Jan Jabczyński, “Newton ring interferometry application for 2D lens array alignment with micrometer accuracy,” Appl. Opt. 62, 5379-5385 (2023)
[11] Daniel J. Gauthier, Robert W. Boyd, Robert K. Jungquist, Jerold B. Lisson, and Laurie Lyon Voci, “Phase-conjugate Fizeau interferometer,” Opt. Lett. 14, 323-325 (1989)
[12] Minjae Kim, Arjent Imeri, Syed Azer Reza, “Fizeau interferometry-based, motion-free characterization of surface radius of curvature using actively-controlled varifocal optics,” Proc. SPIE 12672, Applied Optical Metrology V, 1267207 (2023)
[13] Bryan D. Statt, Paul G. Dewa, Stephen K. Mack, Horst Schreiber, Bryan D. Stone, and Paul Jay Tompkins “157-nm Twyman-Green interferometer for lens testing,” Proc. SPIE 4346, Optical Microlithography XIV, (2001)
[14] Imeri, A., Reza, S.A. “Robust, motion-free optical characterization of samples using actively-tunable Twyman–Green interferometry,” Sci Rep 13, 5678 (2023)
[15] Minjae Kim, Arjent Imeri, and Syed Azer Reza, “Measuring the radius of curvature of spherical surfaces with actively tunable Fizeau and Twyman-Green interferometers,” Appl. Opt. 63, 4077-4087 (2024)
[16] R. Kingslake, “The interferometer patterns due to the primary aberrations,” Trans. Opt. Soc. 27 94 (1925)
[17] R. Kingslake, “The analysis of an interferogram,” Trans. Opt. Soc. 28 1 (1926)
[18] Reinitzer, Friedrich Richard Kornelius. “Beiträge zur Kenntniss des Cholesterins,” Sitzungsberichte, 97, 167-187 (1889)
[19] O.Lehmann, ”Über fliessende Krystalle,” Zeitschrift für Physikalische Chemie. 4: 462–72 (1889).
[20] Bruce A. Averill, Patricia Eldredge, “Principles of General Chemistry,” Creative Commons, Ver 1.0, Section 11.8(2011)
[21] A. Yariv and P. Yeh, “Optical waves in crystals,” John Wiley & Sons, Inc., Chapter 3(1984).
[22] Yang, Deng-Ke; Wu, Shin-Tson, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Inc., Chapter 1(2006)
[23] Sheng, P., “Introduction to the Elastic Continuum Theory of Liquid Crystals,” Springer, Boston, MA, 103-127(1975).
[24] Iam Choon Khoo,” Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Progress in Quantum Electronics, Volume 38, Issue 2, 77-117(2014)
[25] H.-C. Lin, M.-S. Chen, and Y.-H. Lin, “A Review of Electrically Tunable Focusing Liquid Crystal Lenses,” Transactions on Electrical and Electronic Materials, vol. 12, no. 6, 234–240 (2011)
[26] Bin Wang et al, “Liquid Crystal Negative Lens,” Jpn. J. Appl. Phys. 44 4979 (2005)
[27] Mao Ye and Susumu Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571-L573. (2002)
[28] Yoonseuk Choi, Jae-Hong Park, Jae-Hoon Kim, Sin-Doo Lee,” Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials, Volume 21, Issues 1–3, Pages 643-646 (2003)
[29] Mao Ye et al, “Driving of Liquid Crystal Lens without Disclination Occurring by Applying In-Plane Electric Field,” Jpn. J. Appl. Phys. 42 5086 (2003)
[30] Chia-Hao Kuo, Wei-Che Chien, Chia-Ting Hsieh, Chi-Yen Huang, Jyun-Jie Jiang, Yan-Cheng Li, Ming-Fei Chen, Yi-Ping Hsieh, Hui-Lung Kuo, and Chi-Huang Lin, “Influence of pretilt angle on disclination lines of liquid crystal lens,” Appl. Opt. 51, 4269-4274 (2012)
[31] Che Ju Hsu and Chia Rong Sheu, “Preventing occurrence of disclination lines in liquid crystal lenses with a large aperture by means of polymer stabilization”, Opt. Express 19, 14999-15008 (2011)
[32] Eugene Hecht, Optics, 5th ed., Pearson Education, Chapter 10, 507-520 (2017)
[33] Malacara, Zacarias, and Manuel Servin. “Interferogram analysis for optical testing,” CRC press (2018)