| 研究生: |
蘇晏樟 Su, Yen-Chang |
|---|---|
| 論文名稱: |
氧化石墨烯與氫氧化鈷在發泡鎳上之電化學沉積以作為具太陽熱增強性能之超級電容器電極 Electrochemical Deposition of Graphene Oxide and Cobalt Hydroxide on Nickel Foam as An Electrode for Supercapacitors with Solar-thermal Enhanced Performance |
| 指導教授: |
陳東煌
Chen, Dong-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 太陽熱 、超級電容器 、電化學沉積 、還原氧化石墨烯 、氫氧化鈷 |
| 外文關鍵詞: | solar-thermal, supercapacitor, electrochemical deposition, reduced graphene oxide, cobalt hydroxide |
| 相關次數: | 點閱:87 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
太陽光由於高度容易取得,相關技術的發展在有些應用上甚具希望,例如光觸媒、水純化與海水淡化、太陽能電池、及太陽熱發電等。最近,文獻報導其在具太陽熱增強性能之超級電容器的新穎應用,藉著照射太陽光提高電極溫度,可有效提升超級電容器的電容值。本研究以兩步驟電沉積法將氧化石墨烯與氫氧化鈷沉積於發泡鎳上,製得具三維多孔性結構之氫氧化鈷/還原氧化石墨烯/氧化鎳/發泡鎳(Co(OH)2/rGO/NiO/NF)奈米複合材料作為超級電容器之正極,建立最佳之電沉積條件。將此正極與活性碳負極及聚乙烯醇-氫氧化鉀(PVA-KOH)膠態電解質進一步組成全固態非對稱型超級電容器,發現在電流密度為2 A g-1時,照射一倍強度的太陽光(100 mW cm-2),可因溫度提升而將其比電容值由93.2 F g -1顯著提升至124.1 F g -1,增幅達33%。分析不同掃描速率下的循環伏安曲線以評估表面限制程序及擴散限制程序對電容的貢獻,結果發現,照射太陽光所引起的電容提升,主要是因擴散限制程序的貢獻增加所致,並可歸因於高溫時較大的離子移動速率。更者,由Ragone圖得知,照射太陽光可有效提高功率密度與能量密度。此外,本研究證實所發展之全固態非對稱型超級電容器具有良好的穩定性,且在有無照光下皆可成功點亮發光二極體燈泡,顯示其實際適用性及在具太陽熱增強性能之超級電容器發展上的巨大潛力。
Because of the high availability of sunlight, the development of solar-based technologies is promising in several applications such as photocatalysis, water purification/desalination, solar cells, solar-thermal power generation, and etc. Recently a novel application in the supercapacitors with solar-thermal enhanced performance has been reported. The capacitance of supercapacitor could be raised by increasing the electrode temperature via solar illumination. In this study, three-dimensional porous nanocomposite of cobalt hydroxide/reduced graphene oxide/nickel oxide/nickel foam (Co(OH)2/rGO/NiO/NF) was fabricated as the positive electrode of supercapaitor via the two-step electrochemical deposition of graphene oxide (GO) and cobalt hydroxide on the nickel foam. The optimal conditions for the electrochemical deposition were established. By combining this positive electrode with the active carbon-based negative electrode and polyvinyl alcohol-potassium hydroxide (PVA-KOH) gel electrolyte to fabricate the all-solid-state asymmetric supercapacitor, it was found that the specific capacitance at the current density of 2 A g-1 could be significantly raised from 93.2 F g -1 to 124.1 F g -1 under 1 sun illumination (100mW cm-2) owing to the increase of temperature. The enhancement was up to 33%. By analyzing the cyclic voltammetry (CV) curves at different scan rates to evaluate the contributions of capacitance from surface-limited process and diffusion-limited process, it was found that the enhancement of capacitance under solar illumination was mainly due to the increase in the contribution from the diffusion-limited process which could be attributed to the higher ionic mobility at the elevated temperatures. Furthermore, from the Ragone plot, it was found that the energy density and power density could be significantly enhanced under solar illumination. In addition, it was demonstrated that the resulting all-solid-state asymmetric supercapacitor exhibited good stability and could successfully turn on a light-emitting diode (LED) light without and with under solar illumination, revealing its feasibility in practical application and its great potential in the development of the supercapacitors with solar-thermal enhanced performance.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666–669, 2004.
[2] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318, 162–163, 1985.
[3] C. G. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385–388, 2008.
[4] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters, 8, 902–907, 2008.
[5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun, 146, 351–335, 2008.
[6] B. C. Brodie , On the atomic weight of graphite, Philos. Philosophical Transactions of the Royal Society B, 149, 249–259, 1859.
[7] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339–1339, 1958.
[8] M. Nasrollahzadeh, F. Babaei, P. Fakhri, B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Advances, 5(14), 10782–10789, 2015.
[9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7), 1558–1565, 2007.
[10] 張偉娜, 何偉, 張新荔, 石墨烯的製備方法與其應用特性, 化工新型材料, 6, 15–18, 2010.
[11] A. K. Geim, Graphene: status and prospects, Science, 324(5934), 1530–1534, 2009.
[12] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes, Solid State Communications, 143, 101–109, 2007.
[13] X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Letters, 9(12), 4268–4272, 2009.
[14] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191–1196, 2006.
[15] H. Tan, D. Wang, Y. Guo, Thermal growth of graphene: A review, Coatings, 8(40),1–16, 2018.
[16] W. A. de. Heer, C. Berger, X. Wu, P. N. First, Epitaxial graphene, Solid State Communications, 143, (1), 92–100, 2007.
[17] A. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications, Renewable and Sustainable Energy Reviews, 101, 123–145, 2019.
[18] X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, National Science Review, 4(3), 453–489, 2017.
[19] J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes, MRS Bulletin, 36(7), 513–522, 2011.
[20] Y. Yoon, K. Lee, H. Lee, Low-dimensional carbon and MXene-based electrochemical capacitor electrodes, Nanotechnology, 27(17), 172001, 2016.
[21] C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors, International Journal of Hydrogen Energy, 37(16), 11846–11852, 2012.
[22] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochemistry Communications, 9(9), 2315–2319, 2007.
[23] J. K. Chang, C. M. Wu, I. W. Sun, Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications, Journal of Materials Chemistry, 20(18), 3729–3735, 2010.
[24] B. Shen, R. Guo, J. Lang, L. Liu, L. Liu, X. Yan, A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte, Journal of Materials Chemistry A, 4(21), 8316–8327, 2016.
[25] X. Liu, O. O. Taiwo, C. Yin, M. Ouyang, R. Chowdhury, B. Wang, H. Wang, B. Wu, N. P. Brandon, Q. Wang, S. J. Cooper, Aligned Ionogel Electrolytes for High-Temperature Supercapacitors, Advanced Science, 6(5), 1801337, 2019.
[26] F. Yi, H. Ren, K. Dai, X. Wang , Y. Han , K. Wang , K. Li , B. Guan , J. Wang , M. Tang , J. Shan , H. Yang , M. Zheng , Z. You , D. Wei, Z. Liu, Solar thermal-driven capacitance enhancement of supercapacitors, Energy & Environmental Science, 11(8), 2016–2024, 2018.
[27] L. T. Romankiw, Electrochim. Acta Materialia, 42,2985–3005,1997.
[28] B. K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, 1–25, 2015.
[29] P. T. Kissinger, W. R. Heineman, Cyclic voltammetry, Journal of Chemical Education, 60(9), 702–706, 1983.
[30] Q. Wang, F. Gao, B. Xu, F. Cai, F. Zhan, F. Gao, Q. Wang, ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor, Chemical Engineering Journal, 327, 387–396, 2017.
[31] A. Sacco, Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells, Journal of Renewable and Sustainable Energy, 79, 814–829, 2017.
[32] J. R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, New York, 2005.
[33] J. F. Rubinson, Y. P. Kayinamura, Charge transport in conducting polymers: insights from impedance spectroscopy, Chemical Society Reviews, 38, 3339–3347, 2009.
[34] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5(5), 1098–1115, 2013.
[35] V. H. Pham, J. H. Dickerson, Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: Toward high volumetric capacitance, The Journal of Physical Chemistry C, 120(10), 5353–5360, 2016.
[36] A. K. Kercher, D. C. Nagle, Microstructural evolution during charcoal carbonization by X-ray diffraction analysis, Carbon, 41(1), 15–27, 2003.
[37] I. Y. Y. Bua, R. Huang, Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications, Ceramics International, 43, 45–50, 2017.
[38] Z. Zhang, C. Zhao, S. Min, X. Qian, A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors, Electrochimica Acta, 144, 100–110, 2014.
[39] U. M. Patila, Su Chan Lee, J. S. Sohn, S. B. Kulkarni, K. V. Gurav, J. H. Kim, J. H. Kim, S. Lee, S. C. Jun, Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes, Electrochimica Acta, 129, 334–342, 2014.
[40] K. K. Lian, D. W. Kirk, S. J. Thorpe, Investigation of a "Two-State" tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy, Journal of The Electrochemical Society, 142(11), 3704–3712, 1995.
[41] J. C. KLEIN, D. M. Hercules, Surface characterization of model urushibara catalysts, Journal of Catalysis, 82, 424-441, 1983.
[42] Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, K. Qiu, C. M. Lic, T. Yu, Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance, RSC Advances, 3, 5851–5859, 2013.
[43] C. Lei, X. Zhu, B. Zhu, J. Yu, W. Ho, Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water, Journal of Colloid and Interface Science, 466 , 238–246, 2016.
[44] D. Zuili, V. Maurice, P. Marcus, Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy, Journal of The Electrochemical Society, 147(4), 1393–1400, 2000.
[45] H. H. Werner , S. H. Henning, XPS and UPS examinations of passive layers on Ni an Fe53Ni alloys, Corrosion Science, 31, 167–177, 1990.
[46] M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, M. Ito, Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes, Journal of Electroanalytical Chemistry, 566(2), 385–391, 2004.
[47] S. Wu, K. S. Hui, K. N. Hui, K. H. Kim, Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors, Journal of Materials Chemistry A, 4(23), 9113–9123, 2016.
[48] Z. Wu, X. L. Huang, Z. L. Wang, J. J. Xu, H. G. Wang , X. B. Zhang, Electrostatic induced stretch growth of homogeneous beta-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors, Scientific Reports, 4, 1–8, 2014.
[49] M. Mirzaee, C. Dehghanian, K. Sabet Bokati, ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors, Applied Surface Science, 436, 1050–1060, 2018.
[50] M. Mirzaee, C. Dehghanian, Flower-like mesoporous nano NiCo2O4 -decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor, Materials Research Bulletin, 109, 10–20, 2019.
[51] Y. Li, M. v. Zijll, S. Chiangb, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, Journal of Power Sources, 196, 6003–6006, 2011.
[52] M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, Z. Ohtaki, Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate, Journal of Applied Physics, 57, 123–128, 1985.
[53] M. Sivakumar, R. Subadevi, S. Rajendran, N. L. Wu, J. Y. Lee, Electrochemical studies on [(1−x)PVA–xPMMA] solid polymer blend electrolytes complexed with LiBF4, Materials Chemistry and Physics, 97, 330–336, 2006.
[54] X. Zhanga, J. Luo, P. Tang, X. Ye, X. Peng, H. Tang, S. G. Sun, J. Fransaer, A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading, Nano Energy, 31, 311–321, 2017.