簡易檢索 / 詳目顯示

研究生: 蘇晏樟
Su, Yen-Chang
論文名稱: 氧化石墨烯與氫氧化鈷在發泡鎳上之電化學沉積以作為具太陽熱增強性能之超級電容器電極
Electrochemical Deposition of Graphene Oxide and Cobalt Hydroxide on Nickel Foam as An Electrode for Supercapacitors with Solar-thermal Enhanced Performance
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 103
中文關鍵詞: 太陽熱超級電容器電化學沉積還原氧化石墨烯氫氧化鈷
外文關鍵詞: solar-thermal, supercapacitor, electrochemical deposition, reduced graphene oxide, cobalt hydroxide
相關次數: 點閱:87下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽光由於高度容易取得,相關技術的發展在有些應用上甚具希望,例如光觸媒、水純化與海水淡化、太陽能電池、及太陽熱發電等。最近,文獻報導其在具太陽熱增強性能之超級電容器的新穎應用,藉著照射太陽光提高電極溫度,可有效提升超級電容器的電容值。本研究以兩步驟電沉積法將氧化石墨烯與氫氧化鈷沉積於發泡鎳上,製得具三維多孔性結構之氫氧化鈷/還原氧化石墨烯/氧化鎳/發泡鎳(Co(OH)2/rGO/NiO/NF)奈米複合材料作為超級電容器之正極,建立最佳之電沉積條件。將此正極與活性碳負極及聚乙烯醇-氫氧化鉀(PVA-KOH)膠態電解質進一步組成全固態非對稱型超級電容器,發現在電流密度為2 A g-1時,照射一倍強度的太陽光(100 mW cm-2),可因溫度提升而將其比電容值由93.2 F g -1顯著提升至124.1 F g -1,增幅達33%。分析不同掃描速率下的循環伏安曲線以評估表面限制程序及擴散限制程序對電容的貢獻,結果發現,照射太陽光所引起的電容提升,主要是因擴散限制程序的貢獻增加所致,並可歸因於高溫時較大的離子移動速率。更者,由Ragone圖得知,照射太陽光可有效提高功率密度與能量密度。此外,本研究證實所發展之全固態非對稱型超級電容器具有良好的穩定性,且在有無照光下皆可成功點亮發光二極體燈泡,顯示其實際適用性及在具太陽熱增強性能之超級電容器發展上的巨大潛力。

    Because of the high availability of sunlight, the development of solar-based technologies is promising in several applications such as photocatalysis, water purification/desalination, solar cells, solar-thermal power generation, and etc. Recently a novel application in the supercapacitors with solar-thermal enhanced performance has been reported. The capacitance of supercapacitor could be raised by increasing the electrode temperature via solar illumination. In this study, three-dimensional porous nanocomposite of cobalt hydroxide/reduced graphene oxide/nickel oxide/nickel foam (Co(OH)2/rGO/NiO/NF) was fabricated as the positive electrode of supercapaitor via the two-step electrochemical deposition of graphene oxide (GO) and cobalt hydroxide on the nickel foam. The optimal conditions for the electrochemical deposition were established. By combining this positive electrode with the active carbon-based negative electrode and polyvinyl alcohol-potassium hydroxide (PVA-KOH) gel electrolyte to fabricate the all-solid-state asymmetric supercapacitor, it was found that the specific capacitance at the current density of 2 A g-1 could be significantly raised from 93.2 F g -1 to 124.1 F g -1 under 1 sun illumination (100mW cm-2) owing to the increase of temperature. The enhancement was up to 33%. By analyzing the cyclic voltammetry (CV) curves at different scan rates to evaluate the contributions of capacitance from surface-limited process and diffusion-limited process, it was found that the enhancement of capacitance under solar illumination was mainly due to the increase in the contribution from the diffusion-limited process which could be attributed to the higher ionic mobility at the elevated temperatures. Furthermore, from the Ragone plot, it was found that the energy density and power density could be significantly enhanced under solar illumination. In addition, it was demonstrated that the resulting all-solid-state asymmetric supercapacitor exhibited good stability and could successfully turn on a light-emitting diode (LED) light without and with under solar illumination, revealing its feasibility in practical application and its great potential in the development of the supercapacitors with solar-thermal enhanced performance.

    總目錄 中文摘要 I Abstract III 總目錄 IX 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1 石墨烯複合材料 1 1.1.1 石墨烯之簡介 1 1.1.2 石墨烯之製備 2 1.2 超級電容器 6 1.2.1 超級電容器之簡介和儲能機制 6 1.2.2 氫氧化鈷在超級電容器之應用 10 1.2.3 溫度效應對超級電容器的影響 12 1.2.4 太陽光發熱之超級電容器應用 15 1.3 研究動機 18 第二章 基礎理論 20 2.1 電化學沉積合成法 20 2.2 循環伏安法理論 21 2.3 定電流充放電理論 24 2.4 電化學阻抗頻譜法 25 第三章 實驗步驟 30 3.1 實驗藥品、儀器、材料 30 3.1.1 藥品 30 3.1.2 儀器 32 3.1.3 實驗材料 34 3.2 材料製備 35 3.2.1 氧化石墨烯之製備 35 3.2.2 rGO/NiO/NF電極之製備 37 3.2.3 Co(OH)2/rGO/NiO/NF電極之製備 39 3.2.4 NiO/NF電極之製備 41 3.2.5 活性碳電極之製備 43 3.2.6 膠態電解質之製備 43 3.2.7 全固態超級電容器Co(OH)2/rGO/NiO/NF//AC之組裝 44 3.3 性質測定與分析 46 3.4 電化學測試 48 3.4.1 Co(OH)2/rGO/NiO/NF電極之電化學測試 48 第四章 結果與討論 52 4.1 Co(OH)2/rGO/NiO/NF之特性與應用 52 4.1.1 Co(OH)2/rGO/NiO/NF之鑑定 52 4.1.2 Co(OH)2/rGO/NiO/NF之電化學特性 63 4.2 Co(OH)2/rGO/NiO/NF//AC全固態超級電容器之電容特性 72 第五章 結論 97 參考文獻 99 表目錄 表3.1 照光發熱後單電極表面溫度變化 51 表3.2 照光發熱後全固態超級電容器Co(OH)2/rGO/NiO/NF//AC之電極表面溫度變化 51 表4.1 照光前後之Co(OH)2/rGO/NiO/NF-50//AC阻抗分析參數 85 表 4.2 沒照光下之擴散限制與表面反應限制之參數 88 表 4.3 照光下之擴散限制與表面反應限制之參數 90 圖目錄 圖 1.1 石墨烯的基本結構示意圖 1 圖1.2 氧化石墨烯之結構 4 圖1.3 化學氣相沉積法製備石墨烯之反應機制示意圖 5 圖1.4 磊晶成長法製備石墨烯之示意圖 5 圖1.5不同儲能裝置之Ragone plot 7 圖1.6 電雙層電容器之示意圖 8 圖1.7 贗電容器之示意圖 8 圖1.8 混合式超級電容器之示意圖 9 圖1.9 氫氧化鈷電沉積於鎳基材之SEM圖 11 圖1.10 溫度提升對FeOOH//APDC f-SSC全固態超級電容器的離子型膠態電解質之反應機制示意圖 13 圖1.11 FeOOH//APDC f-SSC全固態超級電容器在不同溫度下之阻抗圖(a)、掃描速率為50mV s-1下於不同溫度下之CV圖(b)、不同電流密度下之比電容值(c)、Ragone plot(d) 14 圖1.12 藉由光致發熱導致電容值增加之超級電容器示意圖 16 圖1.13 在掃描速率為5mV s-1下照光前後之CV圖(a)、在固定電流密度為3.3mA cm-3下照光前後之充放電曲線圖(b)、在不同掃描速率下照光前後電極之比電容值(c)、在不同電流密度下照光前後電極之比電容值(d) 17 圖2.1 三電極式系統之示意圖 22 圖2.2 循環伏安法之時間對施加電位圖 22 圖2.3 循環伏安曲線圖 23 圖2.4 (a)曲線為理想電容(ideal capacitor)、(b)曲線為電雙層電容器 (EDLC)、(c)曲線為贋電容(pseudocapacitive) 23 圖2.5 (a)曲線為電雙層電容器(EDLC)、(b)曲線為贋電容(pseudocapacitive)之定電流充放電圖 24 圖2. 6 複數平面上阻抗定義與圖形 28 圖2. 7 不同元件的Nyquist plot 29 圖2. 8電化學質傳與動力學阻抗之Nyquist plot 29 圖 3.1 電沉積法合成合成rGO/NiO/NF電極之流程圖 38 圖 3.2 電沉積法合成Co(OH)2/rGO/NiO/NF電極之反應流程圖 40 圖 3.3 電化學處理合成NiO/NF電極之流程圖 42 圖3. 4 膠態電解質溶液之合成示意圖 44 圖3. 5 Co(OH)2/rGO/NiO/NF//AC全固態超級電容器之組裝示意圖 45 圖3.6三極式系統裝置示意圖 48 圖3.7 使用氙燈以及測量全固態超級電容器之示意圖並含電極表面溫度變化放大圖 50 圖4.1 rGO/NiO/NF(a,b)、Co(OH)2/rGO/NiO/NF-25(c,d)、Co(OH)2/rGO /NiO/NF-50(e,f)、Co(OH)2/rGO/NiO/NF-100(g,h)、Co(OH)2/rGO/NiO/NF-200(i,j)之SEM圖 56 圖4.2 rGO/NiO/NF(a)、Co(OH)2/rGO/NiO/NF-25(b)、Co(OH)2/rGO/NiO/NF-50(c)、Co(OH)2/rGO/NiO/NF-100(d)與Co(OH)2/rGO/NiO/NF-200(e)之EDX圖譜 57 圖4.3 GO(a)、rGO/NiO/NF(b)、Co(OH)2/rGO/NiO/NF-25(c)、Co(OH)2/rGO/NiO/NF-50(d)、Co(OH)2/rGO/NiO/NF-100(e)與Co(OH)2/rGO/NiO/NF-200(f)之XRD圖譜 58 圖4.4 Co(OH)2/rGO/NiO/NF-50之C、O、Co、Ni元素mapping分析圖 59 圖4.5 Co(OH)2/rGO/NiO/NF-50之HR-TEM圖 60 圖4.6 Co(OH)2/rGO/NiO/NF-50之BJH累積孔徑分布圖和微分後BJH孔徑分佈圖(內插圖為BET吸脫附曲線圖) 61 圖4.7 Co(OH)2/rGO/NiO/NF-50全範圍之XPS圖(a)、元素比例分析(b)、C1s(c)、Co2p (d)、Ni2p (e)、Os (f)之XPS圖 62 圖4.8 NiO/NF是否有進行KOH處理之CV曲線疊圖(a)、rGO/ NiO/NF是否有進行KOH處理之CV曲線疊圖(b) 66 圖4.9 不同電沉積時間於掃描速率為5 mV s-1之CV曲線疊圖(a)、rGO/NiO/NF(b)、Co(OH)2/rGO/NiO/NF-25(c)、Co(OH)2/rGO/NiO/NF-50(d)、Co(OH)2/rGO/NiO/NF-100(e)與Co(OH)2/rGO/NiO/NF-200(f)在不同掃描速率下之CV曲線圖 67 圖4.10 rGO/NiO/NF、Co(OH)2/rGO/NiO/NF-25、Co(OH)2/rGO/NiO/NF-50、Co(OH)2/rGO/NiO/NF-100與Co(OH)2/rGO/NiO/NF-200於電流密度為2 A g-1下充放電曲線疊圖(a)、於電流密度為2 A g-1下之比電容值(b)、於不同電電沉積時間之活性物質克重變化(c)、於電流密度為2 A g-1下之面電容值(d) 70 圖4.11 rGO/NiO/NF (a)、Co(OH)2/rGO/NiO/NF-25 (b)、Co(OH)2/rGO/NiO/NF-50 (c)、Co(OH)2/rGO/NiO/NF-100 (d)與Co(OH)2/rGO/NiO/NF-200 (e)在不同電流密度下之充放電曲線圖、不同電沉積時間之Co(OH)2/rGO/NF-X在不同電流密度的比電容值(f) 71 圖4.12 Co(OH)2/rGO/NiO/NF-50與AC複合電極於掃描速率10 mV s-1下之CV曲線圖 74 圖4.13 rGO/NiO/NF//AC(a)、Co(OH)2/rGO/NiO/NF-25//AC (b)、Co(OH)2/rGO/NiO/NF-50//AC (c)、Co(OH)2/rGO/NiO/NF-100//AC (d)與Co(OH)2/rGO/NiO/NF-200//AC (e)沒照光之下在不同掃描速率下之CV圖、沒照光之下不同電沉積時間Co(OH)2/rGO/NiO/NF//AC在不同掃描速率的比電容值(f) 75 圖4.14 rGO/NiO/NF//AC (a)、Co(OH)2/rGO/NiO/NF-25//AC (b)、Co(OH)2/rGO/NiO/NF-50//AC (c)、Co(OH)2/rGO/NiO/NF-100//AC (d)與Co(OH)2/rGO/NiO/NF-200//AC (e) 沒照光之下在不同電流密度下之充放電圖、不同電沉積時間Co(OH)2/rGO/NiO/NF//AC沒照光之下在不同電流密度的比電容值(f) 76 圖4.15 rGO/NiO/NF//AC(a)、Co(OH)2/rGO/NiO/NF-25//AC (b)、Co(OH)2/rGO/NiO/NF-50//AC (c)、Co(OH)2/rGO/NiO/NF-100//AC (d)與Co(OH)2/rGO/NiO/NF-200//AC (e)於照光前後CV圖之比較、不同電沉積時間Co(OH)2/rGO/NiO/NF//AC之照光前後的比電容值(f)(反應條件: 固定掃描速率為10 mV s-1;光照強度100 mW cm2) 79 圖4.16 rGO/NiO/NF//AC(a)、Co(OH)2/rGO/NiO/NF-25//AC (b)、Co(OH)2/rGO/NiO/NF-50//AC (c)、Co(OH)2/rGO/NiO/NF-100//AC (d)與Co(OH)2/rGO/NiO/NF-200//AC (e)於照光前後之充放電圖比較、不同電沉積時間Co(OH)2/rGO/NiO/NF//AC之照光前後的比電容值(f)(反應條件: 固定電流密度為2 A g-1;光照強度100 mW cm-2) 80 圖4.17 Co(OH)2/rGO/NiO/NF-50//AC於照光前後之阻抗圖(a)、Co(OH)2/rGO/NiO/NF-50//AC於沒照光下之曲線及模擬曲線圖(b)、Co(OH)2/rGO/NiO/NF-50//AC於照光下之曲線及模擬曲線圖(c) (反應條件:光照強度100 mW cm-2) 84 圖4.18 說明Co(OH)2/rGO/NiO/NF-50//AC之動力學: 於沒照光之下不同掃描速率之CV圖(a)、照光之下不同掃描速率之CV圖(b)、於沒照光之下不同電位取log(i) vs. log(v) 作圖(c)、於照光之下不同電位取log(i) vs. log(v) 作圖(d)(反應條件:光照強度100 mW cm-2) 86 圖4.19 說明Co(OH)2/rGO/NiO/NF-50//AC之動力學:沒照光之下於掃描速率為10 mV s-1下擴散限制和表面反應限制之分佈圖(a)、照光下於掃描速率為10 mV s-1下擴散限制和表面反應限制之分佈圖(b)、沒照光之下於不同掃描速率之電容值與貢獻百分比(c)、照光下於不同掃描速率之電容值與貢獻百分比(d)(反應條件:光照強度100 mW cm-2) 87 圖4.20 Co(OH)2/rGO/NiO/NF-50//AC 在沒照光之下於固定電流密度為5 A g-1之穩定性測試(a)、Co(OH)2/rGO/NiO/NF-50//AC 在照光下於固定電流密度為5 A g-1之穩定性測試(b) 94 圖4.21 Co(OH)2/rGO/NiO/NF-50//AC 於沒照光之下不同電流密度之充放電圖(a)、Co(OH)2/rGO/NiO/NF-50//AC 於照光下不同電流密度之充放電圖(b)、Co(OH)2/rGO/NiO/NF-50//AC 於照光前後之Ragone plot(c) (反應條件:光照強度100 mW cm-2) 95 圖4.22兩個Co(OH)2/rGO/NiO/NF-50//AC在沒照光之下串聯將LED燈發亮(a)、兩個Co(OH)2/rGO/NiO/NF-50//AC在照光下串聯將LED燈發亮(b) (反應條件:光照強度100 mW cm-2) 96

    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666–669, 2004.
    [2] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, C60: Buckminsterfullerene, Nature, 318, 162–163, 1985.
    [3] C. G. Lee, X. D. Wei, J. W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385–388, 2008.
    [4] A. A. Balandin, S. Ghosh, W. Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Letters, 8, 902–907, 2008.
    [5] K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun, 146, 351–335, 2008.
    [6] B. C. Brodie , On the atomic weight of graphite, Philos. Philosophical Transactions of the Royal Society B, 149, 249–259, 1859.
    [7] W. S. Hummers, R. E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339–1339, 1958.
    [8] M. Nasrollahzadeh, F. Babaei, P. Fakhri, B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Advances, 5(14), 10782–10789, 2015.
    [9] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45(7), 1558–1565, 2007.
    [10] 張偉娜, 何偉, 張新荔, 石墨烯的製備方法與其應用特性, 化工新型材料, 6, 15–18, 2010.
    [11] A. K. Geim, Graphene: status and prospects, Science, 324(5934), 1530–1534, 2009.
    [12] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girit, A. Zettl, On the roughness of single- and bi-layer graphene membranes, Solid State Communications, 143, 101–109, 2007.
    [13] X. Li, W. Cai, L. Colombo, R. S. Ruoff, Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Letters, 9(12), 4268–4272, 2009.
    [14] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191–1196, 2006.
    [15] H. Tan, D. Wang, Y. Guo, Thermal growth of graphene: A review, Coatings, 8(40),1–16, 2018.
    [16] W. A. de. Heer, C. Berger, X. Wu, P. N. First, Epitaxial graphene, Solid State Communications, 143, (1), 92–100, 2007.
    [17] A. Muzaffar, M. B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications, Renewable and Sustainable Energy Reviews, 101, 123–145, 2019.
    [18] X. Chen, R. Paul, L. Dai, Carbon-based supercapacitors for efficient energy storage, National Science Review, 4(3), 453–489, 2017.
    [19] J. W. Long, D. Bélanger, T. Brousse, W. Sugimoto, M. B. Sassin, O. Crosnier, Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes, MRS Bulletin, 36(7), 513–522, 2011.
    [20] Y. Yoon, K. Lee, H. Lee, Low-dimensional carbon and MXene-based electrochemical capacitor electrodes, Nanotechnology, 27(17), 172001, 2016.
    [21] C. Zhao, X. Wang, S. Wang, Y. Wang, Y. Zhao, W. Zheng, Synthesis of Co(OH)2/graphene/Ni foam nano-electrodes with excellent pseudocapacitive behavior and high cycling stability for supercapacitors, International Journal of Hydrogen Energy, 37(16), 11846–11852, 2012.
    [22] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochemistry Communications, 9(9), 2315–2319, 2007.
    [23] J. K. Chang, C. M. Wu, I. W. Sun, Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications, Journal of Materials Chemistry, 20(18), 3729–3735, 2010.
    [24] B. Shen, R. Guo, J. Lang, L. Liu, L. Liu, X. Yan, A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte, Journal of Materials Chemistry A, 4(21), 8316–8327, 2016.
    [25] X. Liu, O. O. Taiwo, C. Yin, M. Ouyang, R. Chowdhury, B. Wang, H. Wang, B. Wu, N. P. Brandon, Q. Wang, S. J. Cooper, Aligned Ionogel Electrolytes for High-Temperature Supercapacitors, Advanced Science, 6(5), 1801337, 2019.
    [26] F. Yi, H. Ren, K. Dai, X. Wang , Y. Han , K. Wang , K. Li , B. Guan , J. Wang , M. Tang , J. Shan , H. Yang , M. Zheng , Z. You , D. Wei, Z. Liu, Solar thermal-driven capacitance enhancement of supercapacitors, Energy & Environmental Science, 11(8), 2016–2024, 2018.
    [27] L. T. Romankiw, Electrochim. Acta Materialia, 42,2985–3005,1997.
    [28] B. K. Kim, S. Sy, A. Yu, J. Zhang, Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, 1–25, 2015.
    [29] P. T. Kissinger, W. R. Heineman, Cyclic voltammetry, Journal of Chemical Education, 60(9), 702–706, 1983.
    [30] Q. Wang, F. Gao, B. Xu, F. Cai, F. Zhan, F. Gao, Q. Wang, ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor, Chemical Engineering Journal, 327, 387–396, 2017.
    [31] A. Sacco, Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells, Journal of Renewable and Sustainable Energy, 79, 814–829, 2017.
    [32] J. R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications, Wiley-Interscience, New York, 2005.
    [33] J. F. Rubinson, Y. P. Kayinamura, Charge transport in conducting polymers: insights from impedance spectroscopy, Chemical Society Reviews, 38, 3339–3347, 2009.
    [34] E. P. Randviir, C. E. Banks, Electrochemical impedance spectroscopy: an overview of bioanalytical applications, Analytical Methods, 5(5), 1098–1115, 2013.
    [35] V. H. Pham, J. H. Dickerson, Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: Toward high volumetric capacitance, The Journal of Physical Chemistry C, 120(10), 5353–5360, 2016.
    [36] A. K. Kercher, D. C. Nagle, Microstructural evolution during charcoal carbonization by X-ray diffraction analysis, Carbon, 41(1), 15–27, 2003.
    [37] I. Y. Y. Bua, R. Huang, Fabrication of CuO-decorated reduced graphene oxide nanosheets for supercapacitor applications, Ceramics International, 43, 45–50, 2017.
    [38] Z. Zhang, C. Zhao, S. Min, X. Qian, A facile one-step route to RGO/Ni3S2 for high-performance supercapacitors, Electrochimica Acta, 144, 100–110, 2014.
    [39] U. M. Patila, Su Chan Lee, J. S. Sohn, S. B. Kulkarni, K. V. Gurav, J. H. Kim, J. H. Kim, S. Lee, S. C. Jun, Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes, Electrochimica Acta, 129, 334–342, 2014.
    [40] K. K. Lian, D. W. Kirk, S. J. Thorpe, Investigation of a "Two-State" tafel phenomenon for the oxygen evolution reaction on an amorphous Ni-Co alloy, Journal of The Electrochemical Society, 142(11), 3704–3712, 1995.
    [41] J. C. KLEIN, D. M. Hercules, Surface characterization of model urushibara catalysts, Journal of Catalysis, 82, 424-441, 1983.
    [42] Y. Luo, D. Kong, Y. Jia, J. Luo, Y. Lu, D. Zhang, K. Qiu, C. M. Lic, T. Yu, Self-assembled graphene@PANI nanoworm composites with enhanced supercapacitor performance, RSC Advances, 3, 5851–5859, 2013.
    [43] C. Lei, X. Zhu, B. Zhu, J. Yu, W. Ho, Hierarchical NiO–SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water, Journal of Colloid and Interface Science, 466 , 238–246, 2016.
    [44] D. Zuili, V. Maurice, P. Marcus, Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy, Journal of The Electrochemical Society, 147(4), 1393–1400, 2000.
    [45] H. H. Werner , S. H. Henning, XPS and UPS examinations of passive layers on Ni an Fe53Ni alloys, Corrosion Science, 31, 167–177, 1990.
    [46] M. Nakamura, N. Ikemiya, A. Iwasaki, Y. Suzuki, M. Ito, Surface structures at the initial stages in passive film formation on Ni(111) electrodes in acidic electrolytes, Journal of Electroanalytical Chemistry, 566(2), 385–391, 2004.
    [47] S. Wu, K. S. Hui, K. N. Hui, K. H. Kim, Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors, Journal of Materials Chemistry A, 4(23), 9113–9123, 2016.
    [48] Z. Wu, X. L. Huang, Z. L. Wang, J. J. Xu, H. G. Wang , X. B. Zhang, Electrostatic induced stretch growth of homogeneous beta-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors, Scientific Reports, 4, 1–8, 2014.
    [49] M. Mirzaee, C. Dehghanian, K. Sabet Bokati, ERGO grown on Ni-Cu foam frameworks by constant potential method as high performance electrodes for supercapacitors, Applied Surface Science, 436, 1050–1060, 2018.
    [50] M. Mirzaee, C. Dehghanian, Flower-like mesoporous nano NiCo2O4 -decorated ERGO/Ni-NiO foam as electrode materials for supercapacitor, Materials Research Bulletin, 109, 10–20, 2019.
    [51] Y. Li, M. v. Zijll, S. Chiangb, N. Pan, KOH modified graphene nanosheets for supercapacitor electrodes, Journal of Power Sources, 196, 6003–6006, 2011.
    [52] M. Watanabe, K. Sanui, N. Ogata, T. Kobayashi, Z. Ohtaki, Ionic conductivity and mobility in network polymers from poly(propylene oxide) containing lithium perchlorate, Journal of Applied Physics, 57, 123–128, 1985.
    [53] M. Sivakumar, R. Subadevi, S. Rajendran, N. L. Wu, J. Y. Lee, Electrochemical studies on [(1−x)PVA–xPMMA] solid polymer blend electrolytes complexed with LiBF4, Materials Chemistry and Physics, 97, 330–336, 2006.
    [54] X. Zhanga, J. Luo, P. Tang, X. Ye, X. Peng, H. Tang, S. G. Sun, J. Fransaer, A universal strategy for metal oxide anchored and binder-free carbon matrix electrode: A supercapacitor case with superior rate performance and high mass loading, Nano Energy, 31, 311–321, 2017.

    下載圖示 校內:2024-08-22公開
    校外:2024-08-22公開
    QR CODE