簡易檢索 / 詳目顯示

研究生: 童淑珠
Tung, Shu-Chu
論文名稱: 水源中2-MIB與geosmin鑑定與氧化之研究
Identification and oxidation of 2-MIB and geosmin in source water
指導教授: 林財富
Lin, Tsair-Fu
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 146
中文關鍵詞: 藍綠細菌、放線菌、土霉味物質、前氧化處理
外文關鍵詞: Actinomyces; geosmin; 2-methylisoborneol; Oscill
相關次數: 點閱:152下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討南台灣地區重要的自來水水源澄清湖及鳳山水庫發生的土霉味問題,預期成果則為確認土霉味物質geosmin及2-MIB的產生源,並評估水廠前氧化處理對溶解態土霉味物質及胞內土霉味物質的影響。

    本研究藉由澄清湖淨水廠及鳳山淨水廠原水中geosmin及2-MIB濃度的長期監測資料,進行分析,結果發現此兩種臭味物質的濃度變化趨勢與水溫及日均溫變動情形一致,因考量geosmin及2-MIB為水體中微生物的代謝產物,其產臭特性應受水體中的水質參數影響,又鳳山淨水廠一整年皆可監測到2-MIB的存在,濃度也都超過臭味的閾值,最高濃度出現在2003年的7月,濃度高達183 ng/L。而由鳳山淨水廠採回之原水,置於實驗室20C、25C及30C培養,培養8天後,其2-MIB濃度分別增加2.1、4.5及7.4倍。除了溫度影響2-MIB生成,本研究也發現在沒有營養鹽添加的情況下,原水培養之2-MIB的濃度可高達1000-2000 ng/L,兩次採樣及培養的結果發現在氨氮高時需氧化為硝酸鹽才能被產2-MIB的微生物所利用,因此微生物的生長及2-MIB的產生會有1-2天的遲滯期,且於2-MIB快速增長的生長期,僅有30%為溶解態,其他則存於細胞內。

    研究中共分離出四株產臭的微生物,其一為產2-MIB藍綠細菌,以光學顯微鏡觀察判定為顫藻屬(Oscillatoria),另外三株放線菌,以16S rRNA片段基因定序後比對NCBI的基因資料庫,分別判定為產geosmin及2-MIB的Streptomyces malaysiensis ,產geosmin的S. roseoflavus,及產2-MIB的S. caelestis。此四株微生物的產臭特性受培養溫度影響甚大,此與環境觀測結果相一致,進而可判斷南台灣兩大水源geosmin主要來自放線菌的代謝物,而2-MIB則來自藍綠細菌與放線菌的代謝物。

    本研究發現不論是環境採樣分析或是純化微生物的培養都發現溫度是影響2-MIB生成量最顯著的因子,為了建立一簡單的預警模式,提供水廠採取適當的應變措施處理突發的臭味問題,本研究也收集來自台灣地區自來水七區管理處之鳳山淨水廠的原水監測資料含水溫共十項,並收集高雄氣象站監測的日均溫等四項參數,利用因數分析、主成分分析及逐步回歸分析等統計技術分析十四項環境因子對2-MIB濃度高低的影響程度,結果僅發現水溫或氣溫為影響2-MIB生成最顯著的因子

    由於水溫與氣溫非獨立變數,基於氣溫資料為監測站自動監測紀錄,資料容易取得,因此本研究擬利用氣溫資料建立簡便的2-MIB濃度預測模式,以提供水廠在面臨臭味事件時能即時採取應變措施,如粉狀活性碳或氧化劑劑量的施放。因考量微生物代謝的特性,即當日測得的2-MIB濃度應受採樣前數日的環境特性影響,此研究中計算起始日(含採樣當日及前6日)往前推算共1~14天的平均氣溫與2-MIB濃度進行相關分析,結果發現採樣前1日至前9日共9天的平均氣溫與2-MIB的濃度相關係數最大,並建立預測方程式2-MIB concentration (ng/L) = 0.3406+0.0579×T1-9 (R2=0.90, F=119.174, p<0.001) ,採樣數據為2000年12月至2001年7月。

    利用所建立的預測模式預測2001年8月至2003年7月鳳山淨水廠原水中2-MIB的濃度,結果發現70%的觀測值位於95%的預測區間內。其中因兩場暴雨導致2001年9月與10的觀測值遠低於預測值,還有2003年7月23 mm的累積雨量遠低於歷年七月平均雨量400 mm,導致兩測值高出預估值60%-80%,而創歷史新高的2-MIB濃度183 ng/L。因此進行2-MIB濃度預估時,除了以平均氣溫計算外,另需考慮採樣前的雨量變化,以求得較佳的近似值。

    氯、高錳酸鉀與臭氧為常施用於自來水系統的前氧化劑,本研究發現批次反應中,氯與高錳酸鉀對水中溶解態的2-MIB幾無去除效果,即使氧化劑劑量已達10mg/L,2-MIB的去除率也僅有10%。在半批次反應系統中,臭氧施放過量時,2-MIB以假一階的反應動力進行降解,臭氧供應量4 mg/L,鳳山淨水廠原水中溶解態的2-MIB去除率可達50%以上。另外當水體中存在產臭的藍綠菌細胞時,此三種氧化劑皆能導致細胞膜受損,致胞內的2-MIB釋出,然而只有臭氧對溶解態的2-MIB有移除效果,因此當水廠發生藻華所引起的臭味事件時,較好的處理對策應先考慮移除細菌或藻類細胞,再行前氧化程序,以避免溶解態的2-MIB或消毒副產物的前驅物濃度提高,致後續的處理成效降低。

    以上幾點具體成果希望能提供水廠管理與技術方面的指引,有助於其評選最佳的土臭味問題控制策略。

    Musty and earthy odor is present in the source water of Feng-Shen Waterworks (FSW) and Cheng-Chin Lake Waterworks (CCLW) south Taiwan year round. MIB concentrations were between 10ng/L and 200 ng/L, and higher concentrations happened in warm seasons, i.e. between May and October. In cooler seasons, from November to April, the concentrations were much lower. However the concentrations always exceed the odor threshold 2-10 ng/L. Although 2-methylisoborneol (2-MIB) and geosmin are responsible for the musty and earthy odor, respectively, the possible odor producers remained unknown.

    In this study four 2-MIB and geomsin producers were isolated for determining their odorant production, and release and destruction of the odorants under oxidation processes. The odorant producers, including a cyanobacterium and two actinomycetes were isolated from two source waters in southern Taiwan, and then identified using molecular biotechnology. Although the cyanobacterium, a 2-MIB producer, was only identified as Oscillatoria sp., the three actinomytecetes were identified as Streptomyces caelestis producing 2-MIB, S. roseoflavus producing geosmin and S. malaysiensis producing 2-MIB and geosmin after comparing the extracted DNA sequence with the NCBI database.

    Both the purified cyanobacterium and actinomycetes were incubated at 20, 25 and 30C for the determination of 2-MIB and geosmin production ratios. At 20 and 25C, a substantial proportion (around 80%) of 2-MIB retained intracellularly for the cyanobacterium at the logarithmic growth phase. The intracellular 2-MIB soon released into water once the cyanobacterium reached its stationary growth phase. The 2-MIB production ratio was about 300 ng/ug chl. a at three temperatures. For actinomycetes (except S. roseoflavus), about 50% of either geosmin or 2-MIB were present within cells at the logarithmic growth phase. The production ratio for 2-MIB and geosmin was around 1-5 ng/mg-biomass for the two actinomycetes.

    Two statistical methods, including principle component analysis and multiple linear regression technique were employed to correlate the 2-MIB concentrations with all the corresponding water quality and meteorological data collected from December 2000 to June 2001. The results suggested that 2-MIB concentration was highly correlated to water temperature or ambient temperature. Further analysis of ambient temperature with 2-MIB concentration suggested that a good correlation was observed between 2-MIB concentration and T1-9. The correlation equation, with regression coefficient = 0.90, is expressed as

    2-MIB concentration (ng/L) = 0.3406+0.0579×T1-9 (R2=0.90, F=119.174, p<0.001)

    The equation was then employed to predict the 2-MIB concentrations for the period of July 2001 to July 2003. The data fits the predicted line closely, with about 70% of the observed 2-MIB concentrations falling into the 95% prediction intervals. These high correlations between 2-MIB concentration and environmental temperatures may provide a simple way for the utility to estimate the concentration of odorants, and serve as a means for the selection of control measure

    To understand the effect of oxidants used in waterworks on the dissolved and cell-bounded 2-MIB concentration, three oxidants, sodium hypochlorite, potassium permanganate, and ozone were tested. Chlorine and permanganate were much less effective, both removing only about 10% of the 2-MIB within 60 minutes with 10 mg/L addition in batch system. In semi-batch system, the overdose ozone applied, the 2-MIB decayed under 1st order reaction. Oxidation of the Oscillatoria sp. laden water was also conducted with addition of chlorine, permanganate, and ozone. As all the three oxidants might break the cell membrane of O. sp. and caused the release of almost all the MIB from cells into water, only ozone could effectively destroy dissolved MIB to a degree of higher than 50%.

    Abstract (in Chinese) --I Abstract-------------------------------------------------------------------------------------IV Figure of Contents -VIII Table of Contents XI Chapter 1 Introduction 1-1 Chapter 2 Literature Review 2-1 2-1 The off-flavors problem in drinking water 2-1 2-2 Off-flavors producing microorganisms 2-5 2-3 Biosynthesis of geosmin and 2-MIB 2-13 2-4 Effect of environmental factors on odor producing microorganisms 2-17 2-5 Control of odors 2-23 Chapter 3 Materials and Methods 3-1 3-1 Site description 3-1 3-2 The statistical methods 3-6 3-3 Isolation, purification, culture and growth measurement of cyanobacteria and actinomycetes 3-9 3-4 DAN extraction, PCR and Phylogenetic analyses amplification 3-14 3-5 Chlorine, permanganate and ozone oxidation experiments------------------- 3-16 3-6 Analysis of 2-MIB and geosmin------------------------------------------------- 3-19 Chapter 4 Results and Dissussion------------------------------------------------------- 4-1 4-1 Occurrence of 2-MIB and geosmin in two source waters--------------------- 4-1 4-2 The cell growth and 2-MIB production of Oscillatoria sp.--------------------4-10 4-3 The cell growth and odorants production of actinomycetes-------------------4-22 4-4 Prediction of 2-MIB concentration in source water----------------------------4-35 4-5 Oxidation of dissolved 2-MIB and Oscillatoria sp.–laden water------------ 4-45 Chapter 5 Summary and Conclusions-------------------------------------------------- 5-1 Reference 6-1 Contents of Figure Figure 2-1-1 The taste and odor wheel of drinking water---------------------------- 2-2 Figure 2-1-2 Maps of the waterworks with odor problems in Taiwan 2-4 Figure 2-3-1 MVA pathway and MEP pathway 2-16 Figure 2-5-1 Ozone reaction pathway ------------------------------------------------- 2-31 Figure 3-1-1 Schematic diagram of the experimental procedure 3-2 Figure 3-1-2 The advanced treatment process of CCLWTP 3-3 Figure 3-1-3 The conventional treatment process of FSWTP----------------------- 3-4 Figure 3-3-1 The broth culture of actinomycetes 3-11 Figure 3-3-2 The procedure of SEM observation------------------------------------- 3-12 Figure 3-3-3 The photo of S-R cell 3-13 Figure 3-4-1 The procedure of DNA extraction---------------------------------------3-15 Figure 3-5-1 The apparatus of ozonation 3-18 Figure 4-1-1 The concentrations of 2-MIB and geosmin and corresponding temperature in the source water of FSR------------------------------- 4-3 Figure 4-1-2 The trend of 2-MIB concentrations in the source water of Cheng-Chin Lake waterworks--------------------------------------------------------- 4-4 Figure 4-1-3 The correlation of 2-MIB concentrations and daily-mean temperature --------------------------------------------------------------------------4-4 Figure 4-1-4 The concentrations of MIB of FSW source water cultivated under 20C, 25C and 30C 4-6 Figure 4-1-5(a) The concentration changes of 2-MIB in cultivated experiments (water from dry season) 4-8 Figure 4-1-5(b) The concentration changes of nutrient in cultivated experiments (water from dry season) 4-8 Figure 4-1-6(a) The concentration changes of 2-MIB and optical density at 665nm in cultivated experiments (water from wet season) 4-9 Figure 4-1-6(b) The concentration changes of nutrients and pH in cultivated experiments (water from wet season) 4-9 Figure 4-2-1 The microphoto of Oscillatoria sp. under 400 times of magnifications using optical microscope 4-12 Figure 4-2-2(a) The cell growth and 2-MIB production for Oscillatoria sp. under 25C and 1000 lux of incubation 4-13 Figure 4-2-2(b) The intra- and extra-cellular specific 2-MIB production for Oscillatoria sp. under 25C and 1000 lux of incubation 4-13 Figure 4-2-3(a) The cell growth and 2-MIB production for Oscillatoria sp. under 30C and 1000 lux of incuabtion 4-14 Figure 4-2-3(b) The intra- and extra-cellular specific 2-MIB production for Oscillatoria sp. under 30C and 1000 lux of incuabtion 4-14 Figure 4-2-4 Effects of temperature on 2-MIB and chl. a concentration and specific 2-MIB production for O. sp. 4-19 Figure 4-2-5 Effects of light intensity on 2-MIB and chl. a concentration and specific 2-MIB production for O. sp. 4-20 Figure 4-2-6 Effects of NO3-N on 2-MIB and chl. a concentration and specific 2-MIB production for O. sp. 4-20 Figure 4-2-7 Effects of PO4--P on 2-MIB and chl. a concentration and specific 2-MIB production for O. sp. 4-21 Figure 4-3-1 The SEM microphoto of the spore chain of strain FS1 4-23 Figure 4-3-2 The SEM microphoto of the spore chain of strain FS4 4-24 Figure 4-3-3 The SEM microphoto of the spore chain of strain FS6 4-24 Figure 4-3-4 Effects of temperature on (a) growth and odorants production, and (b) specific odorants production and odorant distribution for S. malaysiensis- 4-30 Figure 4-3-5 Effects of temperature on (a) growth and 2-MIB production, and (b) specific 2-MIB production and odorant distribution for S. caelestis-------- 4-31 Figure 4-3-6 Effects of temperature on (a) growth and geosmin production, and (b) specific geosmin production and odorant distribution for S. roseoflavu------------------------------------------------------------------ 4-32 Figure 4-4-1 The correlation between water and ambient temperature 4-39 Figure 4-4-2. The scree plot of principle component analysis-----------------------4-39 Figure 4-4-3 The contours of regression coefficient for 2-MIB concentrations and different time periods of average of mean daily temperatures- 4-43 Figure 4-4-4 2-MIB fitted values with ambient temperature (T1-9) 4-43 Figure 4-4-5 The predicted and observed 2-MIB concentrations for FSR 4-44 Figure 4-5-1 The degradation of 2-MIB under different ozone dosage------------ 4-48 Figure 4-5-2 The degradation of 2-MIB during ozonation under different matrix 4-49 Figure 4-5-3 Percent removal efficiencies of 2-MIB by different oxidant 4-51 Figure 4-5-4 The concentration change of potassium, magnesium, and calcium during ozonation 4-55 Figure 4-5-5 The concentration change of potassium, 2-MIB, and chlorophyll a during ozonation 4-56 Figure 4-5-6 The concentration change of potassium, 2-MIB, and chlorophyll a under different chlorine dosage 4-56 Figure 4-5-7 The concentration change of potassium, 2-MIB, and chlorophyll a under different permanganate dosage 4-57 Figure 4-5-8 The change of O. sp. filament before and after oxidation 4-57 Contents of Table Table 2-1-1 The five musty/earthy compounds 2-3 Table 2-1-2. The location of source water and waterworks 2-5 Table 2-2-1 Geosmin and/or 2-MIB producing actimomycete 2-7 Table 2-2-2 Cyanobacteria for production of geosmin and/or 2-MIB-------------- 2-9 Table 2-4-1 Tthe effect of light intensity on odorants production by cyanobacteria--------------------------------------------------------------- 2-18 Table 2-4-2 The effect of temperature on odorant producing actinomycetes----- 2-19 Table 2-4-3 The effects of temperature on odorant producing cyanobacteria---- 2-19 Table 2-5-1 Concentrations of 2-MIB at different sampling locations in nine waterworks ----------------------------------------------------------------- 2-26 Table 3-3-1 The composition of BG-11medium 3-10 Table 3-3-2 The composition of starch-casein medium 3-11 Table 3-3-3 The composition of M medium 3-11 Table 3-4-1 Primers used in this study 3-17 Table 3-6-1 The conditions of GC/MS 3-20 Table 4-3-1 Growth and cultural characteristic of three pure actinomycetes strains on solid starch-casein agar 4-23 Table 4-3-2 Sequencing results of the three pure actinomycete strains 4-25 Table 4-3-3 Effects of spore formation on mean biomass dry weight, odorant production, and specific odorant production of three S. spp. at 30C 4-29 Table 4-4-1 The meteorological and water quantity/quality parameters monitored at FSWs 4-36 Table 4-4-2 Correlation matrix for environmental parameters 4-40 Table 4-4-3 The result of principle component analysis----------------------------- 4-41 Table 4-4-4. The coefficient of variables with the first regression------------------4-41 Table 4-4-5. The coefficient of variables with the second regression--------------4-42 Table 4-4-6. The coefficient of variables with the third regression-----------------4-42 Table 4-4-7 The results of stepwise regression (independent variable: 2-MIB concentration)--------------------------------------------------------------- 4-42 Table 4-5-1 The water quality of FSR in 2000 4-48 Table 4-5-2 Comparison of reaction coefficients of 2-MIB degradation with different ozonation tests 4-49 Table 4-5-3 Comparison of percent removal of 2-MIB among three different semi-batch ozonation tests 4-50 Table 4-5-4 Comparison of 2-MIB removal efficiencies for different chlorination and permanganation 4-51

    References

    Amira, A. T., Bongcheol, K. Seung B. K., Gilson, P. M. and Michael, G. (1999) Int. J. Syst. Bacteriol., 49, 1395-1402.
    Anagnostidis, K. and Komarek, J. (1988) Modern approach to the classification system of cyanophytes: 3 Oscillatoriales. Arch. Hydrobiol. Suppl., 80(1), 327-472.
    Aoyama K., Yamada, N., Yamada, M. and Hamamura, N. (1985) Quantatative analysis of earthy-musty odour. Japanese Journal of water and waste, 27, 666-669.
    Aoyama, K. (1990) Studies on the earthy-musty odors in natural water (IV). Mechanism of earthy-musty odor production of actinomycetes. Jour. Applied Bacteriol., 68, 405-410.
    Aoyama, K., Kawamura, N., Saitoh, M., Magara, Y., and Ishibashi Y. (1995) Interactions between bacteria-Free Anabaena Macrospora clone and bacteria isolated from unialgal culture. Wat. Sci. Tech., 31(11),121-126.
    APHA, AWWA, and WPCF. (2000) Supplement to Standard Methods for the Examination of Water and Wastewater, 20th ed., Denver, Colorado, USA.
    APHA, AWWA, and WPCF. (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed., Denver, Colorado, USA.
    Bafford, R. A., Seagull R. W., Chung, S. Y. and Millie, D. F. (1993) Intracellular location of the taste/odour metabolite 2-methylisoborneol in Oscillatoria limosa (Cyanophyta). European Journal of Phycology, 29, 91-95.
    Bentley, R. and Meganathan, R. (1981) Geosmin and methylisoborneol biosynthesis in streptomycetes evidence for an isoprenoid pathway and its absence in non-differentiating isolates. FEBS lett., 125(2), 220-222.
    Berglind, L., Johnsen, I. J., Ormerod, K. and Skulberg, O.M. (1983) Oscillatoria Brevis (KUTZ) Gom. and some other especially odour benthic Cyanophytes in Norwegian inland waters. Wat. Sci. Tech., 15, 241-246.
    Blevins, W. T., Schrader,K. K. and Saadoun, L.(1995) Comparative physiology of Geosmin production by Streptomyces HalstedII and Anabaena sp., Wat. Sci. Tech., 31(11),127-133.
    Bowmer, K. H., Padovan, A., Oliver, R. L., Korth, W. and Ganf, G. G. (1992) Physiology of geosmin production by Anabaena Circinalis isolated form the Murrumbidgee River, Astralia, Wat. Sci. Tech., 25(2),259-267.
    Bruchet, A. (1999) Solved and unsolved cases of taste and odor episodes in the files of inspector Cluzeau. Wat. Sci. Envi., 40(6), 15-21.
    Carlson, K. H., Amy, G. L. and Blais, G. (1996) Integration of the Ozone and biofiltration processes to provide optimum NOM removal and biostability. 1996 Annual Conf. proc., Am. Water Works Assoc., Water Research, 223-248.
    Chen, G., Dussert, B. W. And Suffet, I. H. (1997) Evaluation of Granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water. Wat. Res. Vol. 31(5), 1155-1163.
    Chen, S. Y., Li, C. H. And Tseng, I, C. (1982) Growth of actinomycetes and phytoplankton of Cheng-Ching Lake in relation to odors of lake water (I). Tainan, Taiwan: Department of Envirnmental Engineering, National Cheng Kung University. (In Chinese)
    Chen, S. Y., Li, C. H. And Tseng, I, C. (1983) Growth of actinomycetes and phytoplankton of Cheng-Ching Lake in relation to odors of lake water (II). Tainan, Taiwan: Department of Envirnmental Engineering, National Cheng Kung University. (In Chinese)
    Cordell, G. A. (1976) Biosynthesis of sesquiterperpenes. Chemial Review, 76, 425-460Dionigi, C. P. and Ingram, D. A. (1994) Effects of temperature and oxygen concentration on geosmin production by Streptomyces tendae and Pencillium expansum. J. Agric. Food Chem., 42, 143-145.
    Croll, B. T. (1996) The installation of GAC and ozone surface water treatment plants in Anglian Water, UK. Ozone: Sci. and Engineering, 18(1), 19-40.Gerber, N.N. (1967) Geosmin, an Earthy-Smelling Substance Isolated from Actinomycetes. Biotech. Bioeng., 4 , 321-327
    Dionigi, C. P., Millie, D. F., Spanier, A. M. and Johnsen P. B. (1992) Spore and geosmin production by Streptomyces tendae on several media. J. Agric. Food Chem., 40, 122-125.
    Dionigi, C. P. and Ingram, D. A. (1994) Effects of temperature and oxygen concentration on geosmin production by Streptomyces tendae and Pencillium expansum. J. Agric. Food Chem., 42, 143-145.
    Disch, A., Schwender, J., Möller, C., Lichtenthaler, H. K. And Rohmer, M. (1998) Distribution of mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid bio synthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J., 333, 381-388
    Durrer, M., Zimmerman, U. and Jüttner, F. (1999) Dissolved and particle-bound geosmin in a mesotrophic lake (Lake Zürich): spatial and season distribution and the effect of grazers. Wat. Sci.Tech. 33(17), 3628-3636.
    Ellis, J. and Korth, W. (1993) Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable zeolite-Y. Wat. Res., 27, 535-539.
    Eugashira, K., Ito, K., and Yoshiy, Y. (1992), “Removal of Musty Odor Compound in Drinking Water by Biological Filter”, Wat. Sci. Tech., 25, pp. 307-314.
    Fogg, G.. E. and Thake, B. (1987) Algal Cultures and Phytoplankton Ecology. 3rd ed. Madison: University of Wisconsin Press.
    Frauke, C. P. and Berger, R. G. (1996) Geosmin and related volatiles in bioreactor-cultured Streptmyces citreus CBC 109.60. Appl. Environ. Microbiol. 57, 3429-3432.
    Gerber, N. N. (1969) A volatile metabolite of actinomycetes, 2-methylisoborneol. J. Antibiot., 22, 508-509.
    Gerber, N. N. and Lechevalier, H. A. (1965) Geosmin an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol., 13, 935.
    Gillogly, T. E. T., Snoeyink, V. L., Newcombe, G., and Elarde, J.R. (1999), ”A Simplified Method Determine the Powdered Activated Carbon Dose required to Remove 2-Methylisobornel”, Wat. Sci. Tech. 40(6), 59-64.
    Grafe, U.(1989) Autoregulatory secondary metabolites from actinomycete. In Regulation of Secondary Metabolism in Actinomycetes; Shapiro, S., Ed.; CRC Press:Boca Ratom, FL, 75-135.
    Graham M.R., Summers R.S., Simpson M.R., and MacLeod, B.W. (1999), “Modeling Equilibrium Adsorption of 2-Methylisoborneol and Geosmin in Natural Waters“, Wat. Res. Vol. 33(10), 2291-2300.
    Hanson, R. J. (1989) Side effects of 58 years of copper sulfate treatment of the Fairmont Lakes, Minnesota. Wat. Res. Bull., 20(6), 889-900.
    Hargesheimer, E. E., and Watson, S. B. (1996), “DrinkinWater Treatment Options for Taste and Odor Control”, Wat. Res. Vol. 30(6),1423-1430.Harris, G. P. (1986) Phytoplankton Ecology: Structure, Function, and Fluctuation. Combridge: Combridge University Press.
    Harries, G. P. 1986. Phytoplankton Ecology: Biosynthetic, Function, and Fluctuation. Cambridge: Cambridge Unversity press.
    Hayes, K. P. and Burch, M. D. (1989) Odorous compounds associated with algal blooms in south Australian waters. Wat. Res., 23(1),115-121.
    Herzing, D. R., Snoeyink, V. L., and Wood, N. F. (1977), “Activated carbon adsorption of the odor compounds 2-methylisoborneol and geosmin”, Jour. AWWA, 69, 223-238.
    Hosaka, M., Murtata, K., Likura, Y., Oshimi, A. and Udagawa, T. (1995) Off-flavor problem in drinking water of Tokyo arising from the occurrence of musty odor in a downstream tributary. Wat. Sci. Tech., 31(11), 29-34.
    Hoson, T., Hayashi, S. and Hattori, K. (1995) The Contribution of sedimentation of algal cell to the downstream levels of musty odor. Wat. Sci. Tech., 31(1), 139-144.
    Hu, T. L., and Chiang, P.C. (1996) Odorous compounds from a cyanobacterium in a water purification plant in central Taiwan. Wat. Res., 30(10), 2522-2525.
    Hu, T. L. (1998) The odor production of Anabaena sp. isolated from the inlet of a water purification plant, Proceeding of 4th International Workshop on Drinking Water Quality Management and Treatment Technology, pp.149-153, Taiwan, R.O.C., March 4-5,1998.
    Ishibashi, H. and Miyaji, Y. (1992) Biodegradation of 2-methylisoborneol by oligotrophic bacterium isolated from a eutrophic lake. Wat. Sci. Tech., 25, 269-276.
    Izaguirre, G., Hwang, C.J., Krasner, S.W., and McGuire, M.J. (1982) Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems. Appl. Enivro. Micro., 43(3), 708-417.
    Izaguirre, G. (1992) A copper-talent Phormidium species from Lake Mathews, California, that produces 2-mehtylisoborneol and geosmin. Wat. Sci. Tech., 25(20), 41-48.
    Izaguirre, G. and Taylor, W.D., (1995) Geosmin and 2-methylisobormeol production in a major aqueduct system. Wat. Sci. Tech., 31, 41-48.
    Izaguirre, G., and Taylor, W. D., (1998) A Pseudanabaena Species from Castaic Lake, California, That Produces 2-methylisobrnel. Wat. Res., 32(5), 1673-1677.
    Izaguirre, G., Taylor, W. D., and Pasek, J. (1999) Off-flavor problems in two reservoirs, associated with planktonic Pseudanadaena Species, Wat. Sci. Tech., 40(6),85-90.
    Izaguirre, G. and Taylor, W. D. (2004) A guide to geosmin-and MIB producing cyanobacteria in the United States. Wat. Sci. Tech., 49(9),19-24.
    Izaguirre, G. and Taylor, W.D., “Geosmin and MIB events in a new reservoir in southern California”, 7th IWA SYMPOSIUM on Off-Flavours in the Aquatic Environment, Cornwall, Ontario, Canada, 2rd-7th, 2005.
    Jensen, S. E., Laders, C. L., Goatcher, L. J., Perley, T., Kenefick, S. and Hrudey, S. E. (1994) Actinomycetes as a factor in odour problems affecting drinking water from the north Saskatchewan River. Wat. Res., 28(6), 1393-1401.
    Jones, G. J., and Korth, W. (1995) In situ production of volatile odour compounds by river and reservoir phytoplankton populations in Australia. Wat. Sci. Tech., 31(11), 145-151.
    Jüttner, F.(1985) Characterization of Microcystis strain by alkyl sulfides and beta cyclocitral. Zeitschrift fur Naturforschung, section C 39, 867-871.Jüttner, F. (1995) Elimination of terpenoid odorous compounds by slow sand and river bank filtration of the Ruhr River, Germany. Wat. Sci. tech., 31(11), 211-217.
    Jüttner, F. (1995) Physiology and biochemistry of odorous compounds from freshwater cyanobacteria and algae. Wat. Sci. Tech., 31(11), 69-78.
    Hoefell, D., Ho, L., Aunkofer, W., Bock, F., Keegan, A., Monis, P., Saint, C. And Newcomb, G. (2005) Biofiltration and identification of bacteria involved in the removal of taste and odor compounds from water. 7th IWA SYMPOSIUM on Off-Flavors in the Aquatic Environment, Cornwall, Ontario, Canada, 2rd-7th, 2005.
    Kaas, H. and Henriksen, P. (2000) Saxitoxin (PSP toxins) in Dansih Lakes. Wat. Res., 34(7), 2089-2097.
    Kajino, M. and Sakamoto, K. (1995) The relationship between musty-odor-causing organisms and water quality inv Lake Biwa. Wat. Sci. Envi., 31(11), 153-258.
    Kao, H. P. (1998) Analysis of off-flavors in drinking water. Master’s Thesis, Department of Envirnmental Engineering, National Cheng Kung University. (In Chinese)
    Khiari, D., Suffet, I. H. and Barrett, S. E. (1995a) Extraction and identification of chemicals causing grassy odors in flavor profile analysis (FPA) reference standards. Wat. Sci. Tech., 31(11), 93-98
    Khiari, D., Suffet, I. H. and Barrett, S. E. (1995b) The determination of compounds causing fishy/swampy odors in drinking water supplies. Wat. Sci. Tech., 31(11), 105-112.
    Kim, Y., Lee, Y., Gee, C. S. and Choi, E. (1997) Treatment of taste and odor causing subrtance in drinking water. Wat. Sci. Tech. 35(8), 29-36.
    Lalezary S., Pirbazari M. and Mcguire M.J. (1982). Oxidation of five earthy-musty taste and odor compounds J. AWWA., 78(3), 62-69.
    Lalezary, S., Pirbazari, M., and McGuire, M.J. (1986), “Oxidation of Five Earthy-Musty Taste and Odor Compound”, Jour. AWWA, 78(11), 76-82.
    Lazlezary-Craig, S., Pirbazari, M., Dale, M.E., Tanaka, T.S., and M.J. McGuire, (1988), “Optimizing the Removal of Geosmin and 2-Methylisoborneol by Powdered Activated Carbon”, Jour. AWWA, 80(3), 73-80.
    Lapin, L. L. (1997) Modern Engineering Statistics, Wadsworth Publishing Company, London, England.
    Lee, G. F., Rast, W. and Jones, R. A. (1978) Eutrophication of water bodies: insights for an age-old problem. Envir. Sci. Tech., 12(8),900-908.
    Lee, R. E., Phycology. (1999) 3rd, Cambridge: Cambridge University press.
    Lichtenthaler, H. K. (1998) the plants’ 1-deoxy-D- xylulose—phosphate pathway for biosynthesis of isoprenoids. Fett. Lipid 100, 128-138.
    Lin, T. F., Liu, C. L., Yang, F. C. and Hung, H. W. (2003) Effect of residual chlorine on the analysis of geosmin, 2-MIB and MTBE in drinking water using the SPME technique. Wat. Res., 37, 21-26
    Lin, T. F., Wong, J. Y. and Kao, H. P. (2002a) Correlation of musty and 2-MIB in two drinking water treatments in south Taiwan. Sci. Total Env., 289, 225-235.
    Lin, T. F., Tung, S. C., Liu, C. L. And Hoang, S W. (2002b) Earthy and musty odor compounds in drinking water in Taiwan, Presented at the sixth IWA Symposium on off-flavours in the Aquatic Environment, Barcelona (Spain), October 7-10.
    Lin, T. F. and Fu, C. Y. Origin and control of odors in Cheng-Ching Lake water treatment plant. Proceedings of 3rd International Workshop on Drinking Water Quality Treatment and Management, Taipei, Taiwan. March 1997:3-5.
    Maier, R. M., Pepper, I. L. and Gerba, C. P. (2000) Environmental Microbiology. Academic Press. San Diego, USA.
    Martin, J. F. and Demain A. L. (1976) Control by phosphate of candicidin production. Biochem. Biophys Res Commun., 4, 1103-1110.
    Madry, N. and Pape, H. (1982) Formation of secondary metabolism enzymes in the tylosin producer Streptomyces T59-235. Arch Microbiol., 131, 170-173.
    Martin J. F., Izaguirre, G. and Waterstrat, P. (1991) A planktonic Oscillatoria species from Mississippi catfish ponds that produces the off-flavor compound 2-methylisoborneol. Wat. Res., 25(12), 1447-1451.
    McGuire, M. J., Jones, R. M., Means, E. G., Izaguirre, G. and Preston, A. E. (1984) Controlling attached blue-green algae with copper sulfate. Jour. AWWA, 76(5), 60-65.
    Means, E. G. III and MuGuire, M. J. (1986) An early warning system for taste and odor control. J. Am. Water Works Assoc. 78, 77-83.
    Miller D. N., Bryant J. E., Madsen E. L. and Ghiorse W. C. (1999) Evaluation and optimization of DNA extraction and purification procedure for soil and sediment samples. Appli. Environ. Microbiol., 65(11), 4715-4724.
    Miwa, M. and Morizane, K. (1988) Effect of chelating agents on the growth of blue –green algae and the release of geosmin. Wat. Sci. Tech. 20(8/9), 197-203.
    Möhren, S. and Jüttner, F. (1983) Odorous compounds of different strains of Anabaena and Nostoc (Cyanobacteria). Wat. Sci. Tech., 20(8/9), 197-203.
    Naes, H., Aarnes, H.,Utkilen, H. C., Nilsen, S. and Skulberg, O. M. (1985) Effect of photon fluence rate and specific growth rate on geosmin production of the cyanobacterium Oscillatoria brevis (Kütz) Gom. Appl. Environ. Microbiol., 49, 1538-1540.
    Naes, H., Utkilen, H.and Post, A. F. (1988) factors influencing geosmin production by cyanobacterium Oscillatoria brevis. Wat. Sci. Tech., 20(8/9), 125-131.
    Naes, H., Utkilen, H.and Post, A. F. (1989) Geosmin production in the cyanobacrerium Oscillatoria brevis. Arch. Microbiol.., 151, 407-410.
    Negoro. T. Ando, M. and Ichikawa, N. (1988) Blue-green algae in lake Biwa which produce earthy-musty odors. Wat. Sci. Tech., 20(8/9), 117-123.
    Norton, C. D. and LeChevallier, M. W. (1997) Microbial impact of biological filtration. 1996 Water quality technology Conf., Part II, Am. Water Works Assoc., 1207-1219.
    Ohtani, T., Tanaka, T. and Akiyama, J. (1993) Isolation and characterization of 2-methylisoborneol degrading bacteria from aquatic samples. (in Japanese) Mizu Kankyo Gakkaishi, 16, 122-126.
    Owen, T. and Samuel, D. K. (1988) Nitrogen and the threshold odor number produced by an actinomycete isolated from lake sediments. Wat. Sci. Tech., 20(8/9), 185-191.
    Pollak, F. and Berger , R. (1996). Geosmin and Volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appl. Microbiol., 13, 935-938.
    Persson, P. E. (1988) Odorous algal cultures in culture cllections, Wat. Sci. Tech., 20(8/9), 211-213.
    Perssen, P. E. (1992) A summary of problem areas in aquatic off-flavour research. Wat. Aci. Technol. 25, 335-339.
    Persson, P. E. (1995) 19th century and early 20th century studies on aquatic off-flavours- A historical review. Wat. Sci. Tech., 31(11), 9-13.
    Persson, P. E. (1996) Cyanobacteria and off-flavours. Phycologia, 35(6), 168-171.
    Ploeg, M., Dennis, M. E., and Regt, M.Q., (1995) Biology of Oscillatoria CF. Chalybea, a 2-Methylisoborneol Producing Blue-Green Alga of Mississippi Catfish Ponds. Wat. Sci. Tech., 31(11), 173-180
    Pollak, F. P. and Berger, R. G. (1996) Geosmin and related volatiles in bioreactor-cultured Streptomyces citreus CBS 109.60. Appli. Environ. Microbiol. 62(4), 1295-1299.
    Pollano, J. J. (1996) the role of laboratory in determining the condition of GAC for taste and odor control. 1996 Water quality technology Conf., Part II, Am. Water Works Assoc., 1067-1100.
    Raman, R. K. (1985) Controlling algae in water supply impoundments. Jour. AWWA, 77(8), 41-43.
    Rashash, D. M. C. (1991) An analysis of phytoplankton variations in the Occoquan Reservoir, 1970-1988. Master thesis, Virginia Polytechnic Institute and State University, Blacksburg.
    Rashash, D. M. C., Dietrich, A.M., Hoehn, R. C., and Parker, B.C. (1995) The influence of growth condition on odor-compound production by two chrysophytes and two cyanobacteria. Wat. Sci. Tech., 31(11), 165-172.
    Reynolds, C. S. (1985) The Ecology of Freshwater Phytoplankton. Combridge: Combridge University Press.
    Rittmann, B.E., Grantzer, C.J. and Montiel, A. (1995) Biological treatment to control taste-and-odor compounds in drinking water treatment”, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Coloroda, USA.
    Rice, R. T. and Hansen, S. P. (1994) Small facility experience with ozone and GAC to solve severe algal problems. 1994 Annual Conf. proc., Am. Water Works Assoc., Management and Regulation, 207-228.
    Rippka, D., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
    Rosen, B., Macledo, B. and Simpson, M. (1992) Accumulation and release of geosmin during the growth phase of Anabaena circinalis (Kutz.) Rabenhorst. Wat. Sci. Tech., 25(2), 185-190.
    Saadoun, I. K., Schrader, K. K., and Blevins, W.T., (2001) Environmental and nutritional factors affecting geosmin synthesis by Anabaena sp. Wat. Res., 35(5), 1209-1218.
    Safferman, R. S., Rosen, A. A. and Mashini, C. I. (1967) Earthy-smelling substance from a blue green alga. Envir. Sci. Technol., 1, 429-430.
    Schöller, C., Gürtler, H., Pedersen, P., Søren, M. and Wilkins, K. (2002) Volatile metabolites from actinomycetes. J. Agric. Food Chem.,50, 2615-2621.
    Schrader, K. and Blevins, W. T. (1993) Geosmin-producing species of Streptomyces and Lyngbya from aquaculture ponds. Cana. J. Microbio., 39, 834-840.
    834-840.
    Scholler, C. E. G., Gurtler, H., Pedersen, R., Molin, S. And Wilkins, K. (2002) Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50, 2615-2621.
    Schrader, K. K. and Blevins, W. T. (2001) Effect of carbon source, phosphorus concentration, and several micronutrients on biomass and geosmin production by Streptomyces halstedii. J. of Industrial Microbiology & Biotechnology. 26, 241-247.
    Schwender, J., Zeidler, J., Gröner, R., Müller, C., Focke, M., Braun, S., Lichtenthaler, F.W. and Lichtenthaler, H. K. (1997) Incorporation of 1-deoxy-D- xyluloseinto isoprene and phytol by higher plants and algae. FEBS Lett. 414, 129-134.
    Seligman, K., Enos, A.K. and Lai, H.H. (1992) A comparison of 1988-1990 flavor profile analysis results with water conditions in two northern California reservoirs. Wat. Sci. Tech., 25(2),19-25.
    Seto, H., Watanabe, H. and Furihata, K. (1996) Simultaneous operation of the mevalonate and non-mevalonate patheay in the biosynthesis of isoprenoid in Streptomyces aeriouvifer. Tetrahedron Letters, 37(44), 7979-7982.
    Sivone, K. (1982) Influencing odor production by actinomycetes. Hydrobiology, 86, 165-170.
    Sklenar, K. S. and Horne, A. J. (1999) Horizontal distribution of geosmin in a reservoir before and after copper treatment. Wat. Sci. Tech., 40(6), 229-237
    Spiteller, D., Jux, A., Piel, J. And Boland, W. (2002) Feeding of [5,5-2H2] -1-desoxy-D-xylulose and [4,4,6,6,6-2H5]-mevalolactone to geosmin-producing Streptomyces sp. and Fossombronia pulsilla. Phyto., 61, 827-834.
    Suffet, I. H., Duguet, J., and Mallevialle, J. (1995) Oxidation Processes: Potassium Permangnate, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I.H., Mallevialle, J., and Kawczynski, American Water Works Association, Denver, Coloroda, USA.
    Suffet, I. H., and Wable, O. (1995), “Removal of Taste-and-Odor Cmpounds by Activated Carbon”, In Advances in Taste-and-Odor Treatment and Control, Ed. by Suffet, I. H., Mallevialle, J. and Kawczynski, American Water Works Association, Denver, Coloroda, USA.
    Suffet, I. H. (Mel); Khiari, D. and Bruchet, A. (1999) The drinking water taste and odor wheel for the millennium: beyond geosmin and 2-methylisoborneol. Wat. Sci. Tech., 40(6), 1-13.
    Sugiura, N., Nishimura, O., Inamori, Y., Ouchiyama, T., and Sudo, R., (1997) Grazing characteristics of musty-odor-compound-producing Phormidium Tenue by a microflagellate, Monas Gvttula. Wat. Res., 31(11), 2792-2796.
    Sugiura, N., Iwami, N., Inamori, Y., Nishimura, O., and Sudo, R., (1998) Significance of attached cyanobacteria relevant to the occurrence of musty odor in Lake Kasumigaura. Wat. Res., 32, 3549-3554.
    Sugiura, N. and Nakano, K. (2000) Causative microorganisms for musty odor occurrence in the eutrophic Lake Kasumigaura. Hydrobiologia, 434, 145-150.
    Tabachek, J. L. and Yurkowski, M. (1976) Isolation and identification of blue-green algae producing muddy odor netabolites, geosmin and 2-methylisoborneol, in saline lakes in Manitoba. J. Fish. Res. Board Cana., 23, 99-104.
    Tanaka, A. Oritan, T., Uehara, A., Saito, A., Kishita, H., Niizeki, Y., Yokota, H. And Fuchigami, K. (1996) Biodegradation of a musty odor component 2-methylisoborneol. Wat. Res., 30(3), 759-761.
    Terauchi, N., Ohtani, T., Yamanaka, K., Tsuji, T., Sudou, T. And Ito, K. (1995) Studies on a biological filter for musty odor removal in drinking water treatment processes. Wat. Sci. tech., 31(11), 229-235Yang, F. C. (2001) Removal of 2-MIB in Drinking Water by Powder Activated Carbon, Master’s Thesis, Department of Environmental Engineering, National Cheng Kung University. (In Chinese)
    Tsuchiya, Y. and Matsumoto, A. (1988) Identification of Volatile Metabolites Produced by Blue-Green Algae. Wat. Sci. Tech., .20(8/9) 149-155.
    Tsuchiya, Y., and Matsumoto, A. (1999) Characterization of Oscillatoria f. Granulata Producing 2-Methylisoborneol and Geosmin. Wat. Sci. Tech., 40(6), 245-250.
    Tucker, C. S. (2000) Off-flavor problems in aquaculture. Rev. Fish Sci., 8, 45-88.
    Utkilen, H. C. and Fr shaug,M. (1992) Geosmin production and excretion in a planktonic and benthic Oscillatoria, Wat. Sci. Tech., 25(2),199-206.
    van Breemen, L. W. C. A., Dits, J. S. and Ketelaars, H. A. (1992) Production and reduction of geosmin and 2-mithylisoborneol during storage of river water in deep reservoirs. Wat. Sci. Tech., 233-240.
    van der Ploeg, M. V. D., Tucker, C.S. and Boyd, C.E. (1992) Geosmin and 2-methylisoborneol production by cyanobacteria in fish ponds in the southeastern United States. Wat. Sci. Tech., 25, 283-290.
    van der Ploeg, M., Dennis, M .E., and Regt, M. Q., (1995) Biology of Oscillatoria CF. Chalybea, a 2-methylisoborneol producing blue-green alga of Mississippi catfish ponds. Wat. Sci. Tech., 31(11), 173-180.
    Walpole, R. E., Myers, R. H. and Myers, S. L.” Probability and Statistics for Engineers and Scientists” 6th, Prentice Hall, Inc. 1999
    Wanke, M., Skorupinska, T. K. and Swiewska E. (2001). Isoprenoid biosynthesis via 1-deoxy-D-xylulose-5-phosphate/2-C-methyl-D-erythritol-4-phosphate(Doxp/MEP) pathway. Acta Biochemical Polonica, 48, 663-672.
    Watson, S. B., Brownlee, B., Satchwill, T., and McCauley, E. (1999) The use of solid phase microextraction (spme) to monitor for the major organoleptic compounds produced by chrosophytes in surface waters. Wat. Sci. Tech., 40, 251-256.
    Watson, S. B. (2003) Cyanobacterial and eukaryotic algal odour compounds: signals or by-products. A review of their biological activity. Phycol., 42(4), 332-350.
    Weete, J. D., Blevins, W. T., Wilt, G. R. and Durham, D. (1977) Chemical, biological and environmental factors responsible for the earthy odor in Auburn City water supply. Bull. Agr. Exp. Sta. Ala. 490, 1-46.
    Wen et al. (1995a) The efficient evaluation of aeration engineering in Cheng-Ching Lake. Tainan, Taiwan: Department of Environmental Engineering, National Cheng Kung University. (In Chinese)
    Wen et al. (1995b) The efficient evaluation of aeration engineering in Feng-Shen Reservoir. Tainan, Taiwan: Department of Environmental Engineering, National Cheng Kung University. (In Chinese)
    Westerhoff, P., Rodriguez-Hernandez, M., Baker, L. and Sommerfeld, M. (2005) Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Wat. Res., 39(20), 4899-1912.
    Wnorowski, A. U. (1992) Tastes and odors in the aquatic environment- a review. Water SA, 18(3), 203-214.
    Wong, J. Y. (2000) Research of the odor problems of source of water in southern Taiwan. Master’s Thesis, Department of Envirnmental Engineering, National Cheng Kung University. (In Chinese)
    Wood, S., William, S. T., White, W. R. and Jones F. (1983) Factors influencing geosmin production by a streptomycete and their relevance to the occurrence of earthy taints in reservoirs. Wat. Sci. Tech., 15, 191-198.
    Wu, J. T., Ma, P. and Chou, T. (1991) Variation of geosmin content in Anabaena cells and its relation to nitrogen utilization. Arch. Microbio. 157, 66-69.
    Wu, J. T. and Jüttner, F.(1988a) Effect of environmental factors on geosmin production by Fscherella Muscicola, Wat. Sci. Tech., Vol. 20(8/9),143-148.
    Wu, J. T. and Jüttner, F. (1988b) Differential partitioning of geosmin and 2-methylisoborneol between celluar constituents in Oseillatoria tenuis. Arch. Microbiol., 150,580-583.
    Yagi, M., Jajino, M., Matsuo, U., Ashitani, K. K., Kita, T. and Nakamura, T. (1983) Odor problems in Lake Biwa. Wat. Sci. Technol., 15,311.
    Yagi, O., Sugiura, N. and Sudo, R. (1987). Chemical and physical factors in the production of musty odor by streptomyces spp. Isolated from lake Kasumigaura. Agric. Biol. chem., 51, 2081-
    Yagi, M.,“35 year’s history of off-flavor problems in the southern baxin of the Lake Biwa”, 7th IWA SYMPOSIUM on Off-Flavours in the Aquatic Environment, Cornwall, Ontario, Canada, 2rd-7th, 2005
    Yang, F. C., Liu, C. L. and Lin, T. F. (2001) Evaluation of the effect of powder activated carbon on the control of odors in source water. 18th Workshop on Drinking Water Investigation, 179-193. (In Chinese)
    Young, C. C.; Suffet, I. H. (Mel); Crozes, G. and Bruchet, A. (1999) Identification of a woody-hay odor-causing compound in a drinking water supply. Wat. Sci. Tech., 40(6), 273-278.
    Zaitlin, B., Watson, S. B., Dixon, J. and Steel, D. (2003a) Actinomycetes in the Elbow river basin, Alberta, Canada. Water Qual. Res. J. Canaada, 38(1), 115-125.
    Zaitlin, B., Watson, S. B., Ridal, J., Satchwill, T. and Parkinson, D. (2003b) Actinomycetes in lake Ontario: habitats and geosmin and MIB production. J. Ami. Water Works Assoc., 95(2), 113-118.
    Zimba, P. V., Dionigi, C. P. and Nillie, D. F. (1999) Evaluating the relationship between photopigments and secondary metabolite accumulation in cyanobacteria. J. Phycol., 35, 1422-1429.
    Zimmerman, W. J., Soliman, C.M., and Rosen, B.H. (1995) Growth and 2-methyisoborneol production by the cyanobacterium Phrmidum LM698. Wat. Sci. Tech., 31(11), 181-186.

    下載圖示 校內:立即公開
    校外:2006-08-02公開
    QR CODE