簡易檢索 / 詳目顯示

研究生: 葉家禎
Yeh, Chia-Chen
論文名稱: 厚朴(一種丙烯苯酚的二聚物)在腦下垂體前葉腫瘤細胞中對電穿孔所刺激的電流促進作用
Stimulation by Honokiol, a Dimer of Allylphenol, of Membrane Electroporation-Induced Current in Pituitary GH3 Cells
指導教授: 吳勝男
Wu, Sheng-Nan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 41
中文關鍵詞: 厚朴細胞膜電穿孔氧化傷害去趨勢波動分析法
外文關鍵詞: Honokiol, Membrane Electroporation, Oxidative injury, Detrended fluctuation analysis
相關次數: 點閱:59下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細胞膜電穿孔(MEP)在腦下垂體GH3細胞中是給予一外在的電場刺激下會對細胞膜產生相當大的導電性。本次研究中我們使用一種稱為honokiol (HNK)的中藥會對細胞膜電穿孔所導致的向胞內電流(IMEP)有何影響。利用膜箝制電生理技術,我們發現在GH3細胞中給予0.8 μM的HNK可以增加電穿孔所導致的電流大小,而隨後給予氯化鑭(LaCl3)或氯化錳(MnCl2)可逆轉HNK所產生的IMEP效果。若細胞已先加入10 μM的HNK,再接著給予同樣濃度的過氧基抑制劑(2,2’-azo-bis(2-amidonoprprane), AAPH)則不會再增加IMEP電流強度。此外若將細胞電極內加入1 μM的HNK,IMEP電流活性依然可被偵測到,測出單一離子通道電導為1.04 nS。我們進一步使用一種去趨勢波動分析法(detrended fluctuation analysis, DFA )來分析細胞在過極化(hyperpolarization)時的電流特性。另外當細胞在發生電穿孔電流前10秒前(initial IMEP ,(IPre)),DFA組成可分成短時間的延遲(short time-lag [1] )和長時間延遲(long time-lag [2])兩部份,兩者的交會點在第0.7秒鐘左右。1值為0.46±0.04 (n=7),2值為0.62±0.05 (n=7),顯現出與電穿孔電流訊號有某種相關特性。而在達到最大的電穿孔電流時,值(0.99±0.02,n=8)已無明顯的短、長時間延遲之區別。總結上述,我們實驗結果顯示,給予HNK至GH3細胞會對電穿孔II所導致的電流有增加作用,而造成電穿孔之現象是有可能可透過某些相關特性來預測的。

    Membrane electroporation (MEP) had been identified in GH3 pituitary cells and known to produce a considerable increase in electrical conductivity of cell membrane by using an external electrical field. In this study we used a traditional Asian medicine, honokiol (HNK), to evaluate whether HNK exerts any effects on membrane electroporation-induced inward currents (IMEP). By using the patch-clamp recordings, we found that addition of HNK increased IMEP amplitude in a concentration-dependent manner with an EC50 value of 0.8 μM. A further application of LaCl3 or MnCl2 reversed HNK-induced IMEP. In the presence of HNK (10 μM), subsequent application of a water-soluble initiator of peroxyl radicals, 2,2’-azo-bis(2-amidonoprprane) (AAPH; 10 μM), did not increase IMEP further. As the electrode was filled with HNK (1 μM), the activity of IMEP was also detected with single-channel conductance of 1.04 nS. We applied the detrended fluctuation analysis (DFA) to analyze the current signals in response to large hyperpolarization. The DFA exponents from the current signals at 10 sec preceding the start of initial IMEP (IPre) in GH3 cells exhibited to be two components (short time-lag [1] and long time-lag [2]) with a crossover threshold of about 7 msec. The 1 value was 0.46±0.04 (n=7), whereas the 2 value with 0.62±0.05 (n=7) indicated the presence of long-term correlations of current signals. However, during maximal IMEP, the  value was linear and estimated to be 0.99±0.02 (n=8) with no clear crossover. Taken these findings together, our results indicate that HNK can contribute to MEP-induced channels to increase the amplitude of IMEP in GH3 cells. Furthermore, there is a correlated character of the electropore dynamics that may be allowed to predict the MEP process.

    摘要---------------------------------------------------------------------II Abstract---------------------------------------------------------------IV 誌謝辭-----------------------------------------------------------------VI Introduction------------------------------------------------------------1 Materials and methods----------------------------------------------5 Cell preparations -----------------------------------------------------------------5 Drugs and solutions---------------------------------------------------------------5 Electrophysiological measurement----------------------------------------------7 Data recording---------------------------------------------------------------------7 Data analyses----------------------------------------------------------------------8 Detrended fluctuation analysis (DFA)----------------------------------------10 Results-----------------------------------------------------------------12 Effect of HNK on IMEP in Pituitary GH3 Cells--------------------------------12 The Current-Voltage (I-V) Relationship of IMEP with or without Addition of HNK in GH3 Cells------------------------------------------------------------13 Modification of Voltage-Dependent Activation Curve of IMEP in the Presence and Absence of HNK-------------------------------------------------13 Changes in IMEP Amplitude in the Applications of AAPH and HNK plus AAPH------------------------------------------------------------------------------14 IMEP Amplitude Stimulation by Adding HNK into Patch Pipette-----------15 Ramp-pulse I-V relationship of HNK-induced IMEP recording in GH3 Cells-------------------------------------------------------------------------------15 Analysis of hyperpolarization-induced currents in pituitary GH3 cells--17 Voltage dependence of mean membrane lifetime and the DFA exponent---------------------------------------------------------------------------20 Discussion-------------------------------------------------------------22 References ------------------------------------------------------------28 Figures and Legends -----------------------------------------------33

    Chen, C.Y.C., (2009): Magnolol encapsulated by different acyl chain length of liposomes on inhibiting proliferation of smooth muscle cells. J. Taiwan Inst. Chem. Eng., 40: 380-386.

    Clarson, L.H., Greenwood, S.L., Mylona, P., Sibley, C.P., (2001): Inwardly rectifying K+ current and differentiation of human placental cytotrophoblast cells in culture. Placenta, 22:328-336.

    Dyachok, O., Zhabyeyev, P., McDonald, T.F., (2010): Electroporation-induced inward current in voltage-clamped guinea pig ventricular myocytes. J. Membrane Biol., 238:69-80.

    Esser, A.T., Smith, K.C., Gowrishankar, T.R., Vasilkoski, Z., Weaver, J.C., (2010): Mechanisms for the intracellular manipulation of organelles by conventional electroporation. Biophys. J., 98: 2506-2514.

    Freikman, I., Ringel, I., Fibach, E., (2011): Oxidative stress-induced membrane shedding from RBCs is Ca flux-mediated and affects membrane lipid composition. J. Membr. Biol., 240: 73-82.

    Fried, L.E., Arbister, J.L., (2009). Honikiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal. 11:1139-1148.

    Fujita, M., Itokawa, H., Sashida, Y., (1973): Studies on the components of Magnolia obovata Thunb. 3. Occurrence of magnolol and honokiol in M. obovata and other allied plants. Yakugaku Zasshi, 93: 429-243.

    Hoi, C.P., Ho, Y.P., Baum, L., Chow, A.H, (2010). Neuroprotective effect of honokiol and magnolol, compounds from Magnalia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytother Res. 24:1538-1542.

    Huang, M.H., Wu, S.N., Shen, A.Y., (2005): Stimulatory actions of thymol, a natural product, on Ca2+-activated K+ current in pituitary GH3 cells. Planta Med., 71: 1093-1098.

    Kemmer, G., Keller, S., (2010): Nonlinear least-squares data fitting in Excel spreadsheets. Nat. Protocol, 5: 267-281.

    Kim, S.J., Kwon do, Y., Kim, Y.S., Kim, Y.C., (2010): Peroxyl radical scavenging capacity of extracts and isolated components from selected medicinal plants. Arch. Pharm. Res., 33:867-873.

    Koronkiewicz, S., Kalinowski, S., Bryl, K., (2002): Programmable chronopotentiometry as a tool for the study of electroporation and resealing of pores in bilayer lipid membranes. Biophys. Acta, 1561:222-229.

    Krassowska, W., Filev, P.D., (2007): Modeling electroporation in a single cell. Biophys. J., 92:404-417.

    Li, L., Han, W., Gu, Y., Qiu, S., Lu, Q., Jin, J., Luo, J., Hu, X., (2007): Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res., 67:4894-4903.

    Lin MW, Yang SR, Huang MH, Wu SN. Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-B activation, on Ca2+-activated K+ current in pituitary GH3 cells. J Bio Chem (2004);279(26):26885-26892.

    Lin, Y.C., Li, M., Wu, C.C., (2004): Simulation and experimental demonstration of the electrical field assisted electroporation microchip for in vitro gene delivery enhancement. Lab. Chip, 4:104-108.

    Lin, Y.R., Chen, H.H., Ko, C.H., Chan, M.H., (2006): Neuroprotective activity of honokiol and magnolol in cerebellar granule cell damage. Eur. J. Pharmacol., 537:64-69.

    Liu, P.S., Chen, C.C., Kao, L.S., (1989): Multiple effects of honokiol on catacholamine secretion from adrenal chromaffin cells. Proc. Natl. Sci. Counc. Repub. China B, 13: 307-313.

    Lu, K.Y., Wo, A.M., Lo, Y.J., Chen, K.C., Lin, C.M., Yang, C.R., (2006): Three dimensional electrode array for cell lysis via electroporation. Biosens. Bioelectron, 22:568-574.

    Maruyama, Y., Kuribara, H., Morita, M., Yuzurihara, M., Weintraub, S.T., (1998). Identification of magnolol and honokiol as anxiolytic agents in extracts of saiboku-to, an oriental herbal medicine. J. Nat. Prod. 61:135-138.

    Oliveira, R.A.C. de, Barbosa, C.T.F., Consoni, L.H.A., Rodrigues, A.R.A., Varanda, W.A., Nogueira, R.A., (2006): Long-term correlation in single calcium-activated potassium channel kinetics. Physica A, 364: 13-22.

    Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L., (1995): Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5: 82-87.

    Principe, D.D., Avigliano, L., Savini, I., Catani, M.V., (2011): Trans-plasma membrane electron transport in mammals: fuctional significance in health and disease. Antioxid. Redox Signal., [Epub ahead of print].

    Rols, M.P., (2006). Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim. Biophys. Acta. 1758:423-428.

    Scott, I., Logan, D.C., (2008): Mitochondrial morphology transition is an early indicator of subsequent into cells. Biochim. Biophys. Acta, 1758: 423-238.

    Shen, J.L., Man, K.M., Huang, P.H., Chen, W.C., Chen, D.C., Cheng, Y.W., Liu, P.L., Chou, M.C., Chen, Y.H., (2010): Honokiol and magnolol as multifunctional antioxidative molecules for dermatologic disorders. Molecules, 15:6452-6465.

    Siwy, Z., Mercik, S., Weron, K., Ausloos, M., (2001): Application of dwell-time series in studies of long-range correlation in single channel ion transport: analysis of ion current through a big conductance locust potassium channel. Physica A, 297: 79-96.

    Tachikawa, E., Takahashi, M., Kashimoto, T., (2000): Effects of extract and ingredients isolated from Magnolia obovata Thunberg on catacholamine secretion from bovine adrenal chromaffin cells. Biochem. Pharmacol., 60: 433-440.

    Tsong, T.Y., (1991): Electroporation of cell membranes. Biophys. J., 60:297-306.

    Tsong, T.Y., Su, Z.D., Wu, Y.H., Joubert, V., Ziegler, M., Mir, L.M., Tieleman, D.P., (1999): Biological effects of electric shock and heat denaturation and oxidation of molecules, membranes, and cellular functions. Ann. N. Y. Acad. Sci., 888:211-232.

    Wang, M., Orwar, O., Olofsson, J., Weber, S.G., (2010). Single-cell electroporation. Anal. Bioanal. Chem. 397:3235-3248.

    Weng, T.I., Wu, H.Y., Kuo, C.W., Liu, S.H., (2010): Honokiol rescues sepsis-associated acute lung injury and lethality via the inhibition of oxidative stress and inflammation. Intensive Care Med., 37:533-541.

    Wood, L.S., Tsai, T., Lee, S.K., Vogeli, G., (1995): Cloning and functional expression of a human gene, hIRK1, encoding the heart inward rectifier K+-channel. Gene, 163; 313-317.

    Wu, S.N., Huang, H.C., Yeh, C.C., Chen, S.A., Chiang, H.T., (2002): Stimulation of BKCa channel in cultured smooth muscle cells of human trachea by magnolol. Thorax. 57:67-74.

    Vernier, P.T., Levine, Z.A., Wu, Y.H., Jouber, V., Ziegler, M., Mir, L.M., Tieleman, D.P., (2009): Electroporating field target oxidatively damaged areas in the cell membrane. PLos One, 4: e7966.

    Wu, S.N., Huang, H.C., Yeh, C.C., Yang, W.H., Lo, Y.C., (2011): Inhibitory effect of memantine, an NMDA-receptor antagonist, on electroporation-induced inward currents in pituitary GH3 cells. Biochem. Biophys. Res., Commun., 405:508-513.

    Xu, Q., Yi, L.T., Pan, Y., Wang, X., Li, Y.C., Li, J.M., Wang, C.P., Kong, L.D., (2008): Antidepressant-like effects of the mixture of honokiol and magnolol from the barks of Magnolia officialis in stressed rodents. Prog. Neuropsychopharmacol. Biol. Psychiatry, 32: 715-725.

    Yoo, Y.M., Jeung, E.B., (2010): Melatonin-induced calbindin-D9k expression reduces hydrogen peroxide-mediated cell death in rat pituitary GH3 cells. J. Pineal, Res., 48: 83-93.

    下載圖示 校內:立即公開
    校外:2013-08-20公開
    QR CODE