| 研究生: |
徐維澤 Hsu, Wei-Ze |
|---|---|
| 論文名稱: |
不同孔洞之活性碳材在工業規格超電容器之表現 Performance of Activated Carbons with Different Pore Structures Assembled in Industrial-Scale Supercapacitors |
| 指導教授: |
鄧熙聖
Teng, Hsi-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 工業規格超電容器 、活性碳 、等效電路模擬 、化學活化 、物理活化 、孔洞結構 |
| 外文關鍵詞: | Industrial-scale supercapacitors, activated carbons, electric equivalent circuit simulation, chemical activation, physical activation, pore structure |
| 相關次數: | 點閱:139 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討工業規格超電容器中的電性表現,藉由氮氣吸脫附分析 和電化學測試,觀察活性碳材孔洞的影響。採用前驅物為瀝青以 KOH 活 化的 P 系列(P1, P3, P5)和椰子殼以水蒸氣活化的 C 系列(C2, C4),共五種 活性碳進行探討。由氮氣吸脫附分析,可知碳材孔洞比表面積(St)、總孔 體積(Vt)。從循環伏安法、定電流充放電中得知,最大比電容值依序 P5 (163 F g-1) > P3 (157 F g-1) > P1 (128 F g-1)> C4 (119 F g-1) > C4 (114 F g-1),同系 列中隨著 St上升而增加,而 P 系列又高於 C 系列。最大整體電容值依序 為 P3 (1.62 F) > P1 (1.52 F) > P5 (1.21 F) > C2 (1.17 F) > C4 (0.91 F),因固 定塗層體積受比電容和碳材重量影響。透過 W. Hsieh 等人所研究的比電 容值預測模型,得知 P 系列的單位微孔電容值為 0.083 F g-1 m-2,而 C 系 列活性碳只有 0.072 F g-1 m-2。由瀝青活化來的活性碳材具有階層狀孔洞 結構,此結構能產生高效率的離子移動通道,使微孔充分運用,證明 P 系列為優秀電極材料。從定電流充放電可知整體電阻隨 Vmi/Vt增加而上升, 代表整體阻力由孔洞主導,而Vmi/Vt偏低的活性碳材,其顯示高中孔含量,
中孔能幫助離子在孔洞內傳輸。透過等效電路圖分析交流阻抗,可進一 步使用 Time Constant 證明,中孔的產生能幫助離子在孔洞內傳輸,且能
提升碳材和電解液界面離子傳輸。本研究的探討使我們瞭解孔洞結構對
最大整體電容值、高速放電的維持率與電阻性質之間的影響,適當的前 驅物和活化方式,能使電容值與電阻進一步提升。
This study focuses on the performance of nominal 1 F industrial-scale supercapacitors with P and C-series activated carbons. The different precursors and activation methods make them possessing diverse pore structure and electrochemical properties. The pore structure of carbons was analyzed by with N2 sorption isotherms and 2D-NLDFT-HS evaluation. The electrochemical performance of carbons was analyzed by galvanostatic chargedischarge, Ragone plot, ac impedance spectroscopy and impedance fitting. Combing pore structure and electrochemical performance, find that cell capacitance is affected by the specific surface area and mass loading in industrial-scale supercapacitors, resistance of ions transportation inside the pore is affects by mesopre and the pore structure of P- series is suitable for supercapacitors .
[1] Y. Zhou, Y. Kim, C. Jo, J. Lee, C. W. Lee, and S. Yoon, "A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries," Chem Commun (Camb), vol. 47, pp. 4944-6, May 7 2011.
[2] C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, "Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes," ACS Nano, vol. 4, pp. 1443-1450, 2010/03/23 2010.
[3] S. Yoon, J. Lee, T. Hyeon, and S. M. Oh, "Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon," Journal of The Electrochemical Society, vol. 147, pp. 2507-2512, 2000.
[4] B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications. New York: Kluwer Academic Plenum, 1999.
[5] Y. Kumar, G. P. Pandey, and S. A. Hashmi, "Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes," The Journal of Physical Chemistry C, vol. 116, pp. 26118-26127, 2012/12/20 2012.
[6] J. J. Yoo, K. Balakrishnan, J. Huang, V. Meunier, B. G. Sumpter, A. Srivastava, et al., "Ultrathin planar graphene supercapacitors," Nano Lett, vol. 11, pp. 1423-7, Apr 13 2011.
[7] A. Burke, "Ultracapacitors: why, how, and where is the technology," Journal of Power Sources, vol. 91, pp. 37-50, 11// 2000.
[8] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nat Mater, vol. 7, pp. 845-854, 11//print 2008.
[9] L. Bonnefoi, P. Simon, J. F. Fauvarque, C. Sarrazin, J. F. Sarrau, and A. Dugast, "Electrode compositions for carbon power supercapacitors," Journal of Power Sources, vol. 80, pp. 149-155, 7// 1999.
[10] J. P. Zheng and T. R. Jow, "High energy and high power density electrochemical capacitors," Journal of Power Sources, vol. 62, pp. 155-159, 10// 1996.
[11] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, et al., "Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon," Nat Nano, vol. 5, pp. 651-654, 09//print 2010.
[12] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, "Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors," Science, vol. 335, pp. 1326-1330, March 16, 2012 2012.
[13] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 5/3/ 2000.
[14] P. Simon and Y. Gogotsi, "Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems," Accounts of Chemical Research, vol. 46, pp. 1094-1103, 2013/05/21 2013.
[15] D. Eder, "Carbon Nanotube−Inorganic Hybrids," Chemical Reviews, vol. 110, pp. 1348-1385, 2010/03/10 2010.
[16] T. L. Makarova, B. Sundqvist, P. Scharff, M. E. Gaevski, E. Olsson, V. A. Davydov, et al., "Electrical properties of two-dimensional fullerene matrices," Carbon, vol. 39, pp. 2203-2209, 11// 2001.
[17] D. Li and R. B. Kaner, "Graphene-Based Materials," Science, vol. 320, pp. 1170-1171, May 30, 2008 2008.
[18] A. B. Fuertes and S. Alvarez, "Graphitic mesoporous carbons synthesised through mesostructured silica templates," Carbon, vol. 42, pp. 3049-3055, // 2004.
[19] M. J. Allen, V. C. Tung, and R. B. Kaner, "Honeycomb Carbon: A Review of Graphene," Chemical Reviews, vol. 110, pp. 132-145, 2010/01/13 2010.
[20] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., "Supercapacitor Devices Based on Graphene Materials," The Journal of Physical Chemistry C, vol. 113, pp. 13103-13107, 2009/07/30 2009.
[21] E. Suuberg, Y. Otake, and S. Deevi, "The macromolecular structure of coal-Its relationship to diffusion and reaction processes in coals," Am. Chem. Soc., Div. Gas Fuel Chem., Prepr.;(United States), vol. 33, 1988.
[22] F. Caturla, M. Molina-Sabio, and F. Rodriguez-Reinoso, "Preparation of activated carbon by chemical activation with ZnCl2," Carbon, vol. 29, pp. 999-1007, 1991.
[23] J. Romanos, M. Beckner, T. Rash, L. Firlej, B. Kuchta, P. Yu, et al., "Nanospace engineering of KOH activated carbon," Nanotechnology, vol. 23, p. 015401, 2012.
[24] W. W. Russel, "The Adsorption of Gases and Vapors. Volume I: Physical Adsorption (Brunauer, Stephen)," Journal of Chemical Education, vol. 21, p. 52, 1944/01/01 1944.
[25] J. Y. Ying, C. P. Mehnert, and M. S. Wong, "Synthesis and Applications of Supramolecular-Templated Mesoporous Materials," Angewandte Chemie International Edition, vol. 38, pp. 56-77, 1999.
[26] S. Brunauer, P. H. Emmett, and E. Teller, "Adsorption of Gases in Multimolecular Layers," Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938/02/01 1938.
[27] E. P. Barrett, L. G. Joyner, and P. P. Halenda, "The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms," Journal of the American Chemical Society, vol. 73, pp. 373-380, 1951/01/01 1951.
[28] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, "Graphene: The New Two-Dimensional Nanomaterial," Angewandte Chemie International Edition, vol. 48, pp. 7752-7777, 2009.
[29] R. Ryoo, S. H. Joo, and S. Jun, "Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation," The Journal of Physical Chemistry B, vol. 103, pp. 7743-7746, 1999/09/01 1999.
[30] J. Landers, G. Y. Gor, and A. V. Neimark, "Density functional theory methods for characterization of porous materials," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 437, pp. 3-32, 11/20/ 2013.
[31] P. Tarazona, "Phase equilibria of fluid interfaces and confined fluids Non-local versus local density functionals " Molecular Physics, vol. 60, pp. 573-595, 1987.
[32] N. A. Seaton, J. P. R. B. Walton, and N. quirke, "A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements," Carbon, vol. 27, pp. 853-861, // 1989.
[33] C. Lastoskie, K. E. Gubbins, and N. Quirke, "Pore size heterogeneity and the carbon slit pore: a density functional theory model," Langmuir, vol. 9, pp. 2693-2702, 1993/10/01 1993.
[34] T. A. Centeno and F. Stoeckli, "The assessment of surface areas in porous carbons by two model-independent techniques, the DR equation and DFT," Carbon, vol. 48, pp. 2478-2486, 2010.
[35] J. Jagiello, J. Kenvin, J. P. Olivier, A. R. Lupini, and C. I. Contescu, "Using a new finite slit pore model for NLDFT analysis of carbon pore structure," Adsorption Science & Technology, vol. 29, pp. 769-780, 2011.
[36] V. V. Bhat, C. I. Contescu, N. C. Gallego, and F. S. Baker, "Atypical hydrogen uptake on chemically-activated, ultramicroporous carbon," Carbon, vol. 48, pp. 1331-1340, 2010.
[37] J. Jagiello and J. P. Olivier, "2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation," Carbon, vol. 55, pp. 70-80, 2013.
[38] H. D. Young, Physics. New York: Addison-Wesley Publishing Co., 1992.
[39] P. G. Kostyuk, S. L. Mironov, P. A. Doroshenko, and V. N. Ponomarev, "Surface charges on the outer side of mollusc neuron membrane," The Journal of Membrane Biology, vol. 70, pp. 171-179, 1982/10/01 1982.
[40] K. B. Oldham, "A Gouy–Chapman–Stern model of the double layer at a (metal)/(ionic liquid) interface," Journal of Electroanalytical Chemistry, vol. 613, pp. 131-138, 2/15/ 2008.
[41] C. H. Hamann, A. Hamnett, and W. Vielstich, Electrochemistry. New York: Wiley-Vch, 1998.
[42] J. S. Mattson and H. B. Mark, Activated carbon: surface chemistry and adsorption from solution: M. Dekker, 1971.
[43] A. J. Bard and L. R. Faulkner, Electrochemical Methods Fundamental and Application. Canada: John Wiley & Sons, 1980.
[44] B. Conway, "Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications Plenum Press," New York, 1999.
[45] J. E. B. Randles, "Kinetics of rapid electrode reactions," Discussions of the faraday society, vol. 1, pp. 11-19, 1947.
[46] E. Warburg, "Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom," Annalen der Physik, vol. 303, pp. 493-499, 1899.
[47] R. de Levie, "On porous electrodes in electrolyte solutions," Electrochimica Acta, vol. 8, pp. 751-780, 1963/10/01 1963.
[48] R. De Levie, "On porous electrodes in electrolyte solutions—IV," Electrochimica acta, vol. 9, pp. 1231-1245, 1964.
[49] R. De Levie, "The influence of surface roughness of solid electrodes on electrochemical measurements," Electrochimica Acta, vol. 10, pp. 113-130, 1965/02/01 1965.
[50] H. E. Brouji, J.-M. Vinassa, O. Briat, N. Bertrand, and E. Woirgard, "Ultracapacitors self discharge modelling using a physical description of porous electrode impedance," in Vehicle Power and Propulsion Conference, 2008. VPPC'08. IEEE, 2008, pp. 1-6.
[51] M.-F. Hsueh, C.-W. Huang, C.-A. Wu, P.-L. Kuo, and H. Teng, "The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitors," The Journal of Physical Chemistry C, vol. 117, pp. 16751-16758, 2013.
[52] C.-W. Huang, C.-T. Hsieh, P.-L. Kuo, and H. Teng, "Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes," Journal of Materials Chemistry, vol. 22, pp. 7314-7322, 2012.
[53] C.-W. Huang, C.-A. Wu, S.-S. Hou, P.-L. Kuo, C.-T. Hsieh, and H. Teng, "Gel Electrolyte Derived from Poly(ethylene glycol) Blending Poly(acrylonitrile) Applicable to Roll-to-Roll Assembly of Electric Double Layer Capacitors," Advanced Functional Materials, vol. 22, pp. 4677-4685, 2012.
[54] H.-C. Huang, C.-W. Huang, C.-T. Hsieh, and H. Teng, "Electric double layer capacitors of high volumetric energy based on ionic liquids and hierarchical-pore carbon," Journal of Materials Chemistry A, vol. 2, p. 14963, 2014.
[55] F. Stoeckli and T. A. Centeno, "Optimization of the characterization of porous carbons for supercapacitors," Journal of Materials Chemistry A, vol. 1, p. 6865, 2013.
[56] J. Rouquérol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, et al., "Recommendations for the characterization of porous solids," Pure and Applied Chemistry, vol. 66, pp. 1739-1758, 1994.
[57] K. S. W. Sing and R. T. Williams, "The Use of Molecular Probes for the Characterization of Nanoporous Adsorbents," Particle & Particle Systems Characterization, vol. 21, pp. 71-79, 2004.
[58] R. De Levie, "On porous electrodes in electrolyte solutions: I. Capacitance effects," Electrochimica Acta, vol. 8, pp. 751-780, 1963.
[59] L. Austin and E. Gagnon, "The Triangular Voltage Sweep Method for Determining Double‐Layer Capacity of Porous Electrodes Part I. Theory," Journal of The Electrochemical Society, vol. 120, pp. 251-254, 1973.
[60] O. Stern, "ZUR THEORIE DER ELEKTROLYTISCHEN DOPPELSCHICHT," Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 30, pp. 508-516, 1924.
[61] C. Vix-Guterl, E. Frackowiak, K. Jurewicz, M. Friebe, J. Parmentier, and F. Béguin, "Electrochemical energy storage in ordered porous carbon materials," Carbon, vol. 43, pp. 1293-1302, 2005.
[62] G. Lota, T. A. Centeno, E. Frackowiak, and F. Stoeckli, "Improvement of the structural and chemical properties of a commercial activated carbon for its application in electrochemical capacitors," Electrochimica Acta, vol. 53, pp. 2210-2216, 2008.
[63] G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, and E. Frackowiak, "Effect of pore size distribution of coal-based activated carbons on double layer capacitance," Electrochimica Acta, vol. 50, pp. 1197-1206, 2005.
[64] D. Qu and H. Shi, "Studies of activated carbons used in double-layer capacitors," Journal of Power Sources, vol. 74, pp. 99-107, 1998.