| 研究生: |
阮彥銘 Juan, Yen-Ming |
|---|---|
| 論文名稱: |
金屬氧化物結構之成長及其光電與感測元件研究 The Growth of Metal Oxide Structures and their Application for Optoelectronic and Sensing Devices |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 氧化銅 、氧化鎵 、氧化銦鎵鋅 、氧化鎢 、場發射 、濕度感測器 、光偵測器 、薄膜電晶體 、自我供電元件 |
| 外文關鍵詞: | CuO, Ga2O3, IGZO, WO3, field emission, humidity sensors, photodetectors, thin film transistors, self-powered device |
| 相關次數: | 點閱:129 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究之主要目的為成長金屬氧化物奈米結構,並且分別研製光電與感測元件以及分析其元件特性。因不同之材料及應用可分為三個部分。第一部分為探討P型氧化銅奈米線成長及場發射元件製作與量測,本實驗成功的在銅/氧化銅/玻璃基板上成長氧化銅奈米線。結果顯示根據預先沉積銅膜厚度的不同,同樣生長時間下越厚的銅膜可生長出較高密度和長度的氧化銅奈米線並且有較低的起始電場和較大的場增強因子。此外,我們在測量場發射特性時,外加紫外光照射,由於紫外光的能量大於氧化銅的能隙,因此在照射下會激發出電子電洞對,可有效增強材料之場發射特性。為了能更進一步地增強場發射元件的特性,我們透過快速熱升溫處理製作出銅/氧化銅的複合材料奈米線。利用玻璃基板上成長的氧化銅奈米線在氫氣環境下,快速升溫至攝氏270度,可發現透過快速升溫的處理後,許多銅奈米顆粒在奈米線的表面形成,結果顯示在攝氏270度下還原的銅/氧化銅奈米線有最低的起始電場和最大的場增強因子。另一方面,我們在可撓式矽基板上製作出三維的氧化銅奈米線結構。首先利用矽穿孔和銅電鍍技術在矽基板上製作出直徑為10微米的銅柱陣列。再利用化學機械研磨技術製作出可撓式矽基板,最後透過熱氧化法在銅柱的正面及側邊上生長氧化銅奈米線並量測其場發射特性。透過上述製程可製作出高密度三維氧化銅奈米線結構並與矽基板有良好的附著性,並具有優良的場發射特性,未來也可應用在可撓式場發射元件上。
第二部分在N型材料方面,我們透過氣-液-固成長機制直接在氮化鎵/藍寶石基板上加熱成功合成出單斜晶型氧化鎵奈米線。氧化鎵奈米線對濕度感測有很高的靈敏性,當相對濕度越高,量測到的電流值會隨著相對溼度提升而等效增加。由於氧化鎵是個寬能隙的半導體材料,也可做為一個良好的紫外光偵測器。為了觀察濕度與紫外光之間對材料特性的交互影響,利用氧化鎵奈米線量測不同相對濕度環境下的特性時,加入紫外光的照射;同樣地,在做為紫外光檢測器時,改變環境的相對濕度,觀察光響應的變化。
第三部分為應用金屬氧化物材料製作出電晶體與感測元件,並透過三維堆疊封裝技術與太陽能電池結合製作出自我供電型的元件。本實驗利用非晶氧化銦鎵鋅薄膜作為主動層與高介電常數五氧化二鉭作為閘極介電層來製作薄膜電晶體。並且將薄膜電晶體與指叉背接觸太陽能電池利用三維堆疊封裝技術結合在單一晶片上。在太陽光模擬器照射下,太陽能電池可提供閘極一電壓使其導通,對薄膜電晶體而言可作為一太陽能開關。此外,我們分別應用氧化鎢薄膜製作出濕度感測器以及氧化鎵薄膜製作出光檢測器。同樣地,在指叉背接觸太陽能電池上利用三維堆疊技術以並聯方式結合濕度感測器和光檢測器,成功製作出一多功能自我供電感測元件。透過太陽光模擬器的照射,可提供一偏壓給感測元件,可用來量測環境中相對濕度的變化;利用不同能隙的氧化鎢和氧化鎵薄膜製作成光檢測器,更可分別偵測不同波段的紫外光,做為一雙波段光檢測器。
The main goal of this dissertation is the synthesis and application of metal oxide nanostructure. The dissertation is divided into three sections due to different kind of material and application. The first one is the investigation of p-type CuO nanowires (NWs) and application for field emitters. In the beginning of this dissertation, the growth of p-type CuO NWs by thermal oxidation of Cu film deposited on CuO/glass template is reported. It was found that we could achieve a higher NW density, longer average NW length by increasing the Cu film thickness. The sample with higher NW density has low turn-on field and large field enhancement factors (β). Furthermore, it was found that we could improve the field emission ability and reduce the turn-on field from by simply illuminating the samples with ultraviolet (UV) light. In order to enhance the field emission properties further, hybrid Cu/CuO NWs are fabricated by reduction of CuO NWs. It was found that the surfaces of CuO NWs partially transformed into Cu via rapid thermal annealing (RTA) at 270 °C in H2 ambiance, forming hybrid Cu/CuO NWs. The results show that hybrid Cu/CuO NWs efficiently reduce turn-on field and increase β values. Furthermore, a novel three-dimensional (3-D) structure with CuO NWs is demonstrated. Cu rods with diameter of 10 μm on a flexible silicon substrate were fabricated using through silicon via (TSV) process and chemical mechanical polishing (CMP). 3-D CuO NWs were then grown vertically and laterally on the top and sidewall of the Cu rods via heat treatment in air. The sample performs great field emission properties through above fabrications. The 3-D CuO NWs are suitable for future applications that require a flexible substrate.
Second, the growth and analysis of n-type monoclinic Ga2O3 (β-Ga2O3) sensors are studied. β-Ga2O3 NWs were synthesized via a vapor-liquid-solid mechanism by heating a GaN/sapphire template. It was found that the conductivity of the β-Ga2O3 NW humidity sensors increased monotonically when the relative humidity (RH) was increased. To determine the relationship between UV light and humidity sensing properties, the humidity was measured with and without UV illumination, and the UV photoresponse was measured at various RH values, respectively.
On the third part of this dissertation, metal oxide devices integrated with interdigitated back contact (IBC) photovoltaic (PV) cell as a self-powered device is demonstrated. Ta2O5/a-IGZO thin film transistor (TFT) was fabricated on the rear side of crystalline-Si IBC PV cell by vertical stacking method. The connection of a-IGZO and IBC PV cell was linked by depositing Al to form a single chip as the function of self-powered solar device. This device exhibits switch property of on/off status under illuminated or dark environment. Moreover, self-powered multi-functional sensors were fabricated by integrating an IBC PV cell with a vertically stacked structure into a single chip. The IBC PV cell was vertically connected with WO3 thin film humidity sensor and Ga2O3 thin film PD in parallel. The measured current of WO3 thin film humidity sensor increased monotonically when the RH was increased. The cutoff wavelengths of WO3 and Ga2O3 thin-film were around 370 and 250 nm, respectively, which can be applied to dual band PDs.
Chapter 1
[1] S. Iijima, "Helical microtubules of grapgitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[2] C. W. Wang, J. B. Chen, L. Q. Wang, Y. M. Kang, D. S. Li, and F. Zhou, "Single crystal TiO2 nanorods: Large-scale synthesis and field emission," Thin Solid Films, vol. 520, pp. 5036-5041, 2012.
[3] J. Jean, S. Chang, P. R. Brown, J. J. Cheng, P. H. Rekemeyer, M. G. Bawendi, S. Gradecak, and V. Bulovic, "ZnO Nanowire Arrays for Enhanced Photocurrent in PbS Quantum Dot Solar Cells," Adv. Mater., vol. 25, pp. 2790-2796, 2013.
[4] B. H. Lee, M. H. Kang, D. C. Ahn, J. Y. Park, T. Bang, S. B. Jeon, J. Hur, D. Lee, Y. K. Choi, "Vertically Integrated Multiple Nanowire Field Effect Transistor," Nano Lett., vol. 15, pp. 8056-8061, 2015.
[5] Z. Shi, Y. Zhang, J. Zhang, H. Wang, B. Wu, X. Cai, X. Cui, X. Dong, H. Liang, B. Zhang, and G. Du, "High-performance ultraviolet-blue light-emitting diodes based on an n-ZnO nanowall networks/p-GaN heterojunction," Appl. Phys. Lett., vol. 103, 2013.
[6] Y. Han, C. Fan, G. Wu, H. Z. Chen, and M. Wang, "Low-Temperature Solution Processed Utraviolet Photodetector Based on an Ordered TiO2 Nanorod Array-Polymer Hybrid," J. Phys. Chem. C, vol. 115, pp. 13438-13445, 2011.
[7] C. Wang, W. Zeng, H. Zhang, Y. Li, W. Chen, and Z. Wang, "Synthesis and growth mechanism of CuO nanostructures and their gas sensing properties," J. Mater. Sci.-Mater. Electron., vol. 25, pp. 2041-2046, 2014.
[8] Y. Lu, Z. Wang, S. Yuan, L. Shi, Y. Zhao, and W. Deng, "Microwave-hydrothermal synthesis and humidity sensing behavior of ZrO2 nanorods," RSC Adv., vol. 3, pp. 11707-11714, 2013.
[9] S. Sun, X. Zhang, Y. Sun, J. Zhang, S. Yang, X. Song, and Z. Yang, "A facile strategy for the synthesis of hierarchical CuO nanourchins and their application as non-enzymatic glucose sensors," RSC Adv., vol. 3, pp. 13712-13719, 2013.
[10] D. W. Chu, Y. Masuda, T. Ohji, and K. Kato, "Fast synthesis, optical and bio-sensor properties of SnO2 nanostructures by electrochemical deposition," Chem. Eng. J., vol. 168, pp. 955-958, 2011.
[11] A. E. Rakhshani, "Preparation, characteristics and photovoltaic properties of cuprous-oxide - A review," Solid-State Electron., vol. 29, pp. 7-17, 1986.
[12] B. Balamurugan, and B.R. Mehta, "Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation," Thin Solid Films, vol. 396, pp. 90-96, 2001.
[13] S. Geller, "Crystal structure of beta-Ga2O3," J. Chem. Phys., vol. 33, pp. 676-684, 1960.
[14] M. R. Lorenz, J. F. Woods, and R. J. Gambino, "Some electrical properties of the semiconductor beta-Ga2O3," J. Phys. Chem. Solids, vol. 28, pp. 403-404, 1967.
[15] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, "A Solar-Blind beta-Ga2O3 Nanowire Photodetector," IEEE Photonics Technol. Lett., vol. 22, pp. 709-711, 2010.
[16] T. Y. Tsai, S. J. Chang, W. Y. Weng, S. Liu, C. L. Hsu, H. T. Hsueh,and T. J. Hsueh, "beta-Ga2O3 Nanowires-Based Humidity Sensors Prepared on GaN/Sapphire Substrate," IEEE Sens. J., vol. 13, pp. 4891-4896, 2013.
[17] C.H. Shen, J.M. Shieh, H.C. Kuo, J.Y. Huang, W.H. Huang, C.W. Hsu, Y.H. Lin, H.Y. Chiu, H.Y. Jhan, B.T. Dai, C.T. Lee, C.L. Pan, C.M. Hu, F.L. Yang, "Novel 140°C hybrid thin film solar cell/transistor technology with 9.6% conversion efficiency and 1.1 cm2/V-s electron mobility for low-temperature substrates," IEDM, pp. 700-703, 2010.
[18] Y. Qing, L. Ying, L. Zetang, Y. Zongyin, W. Xue, and W. Zhong Lin, "Self-Powered Ultrasensitive Nanowire Photodetector Driven by a Hybridized Microbial Fuel Cell," Angew. Chem. Int. Ed., vol. 51, pp. 6443-6446, 2012.
Chapter 2
[1] W. Z. Wang, Y. J. Zhan, X. S. Wang, Y. K. Liu, C. L. Zheng, and G. H. Wang, "Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant," Mater. Res. Bull., vol. 37, pp. 1093-1100, 2002.
[2] L. Yu, G. Zhang, Y. Wu, X. Bai, and D. Guo, "Cupric oxide nanoflowers synthesized with a simple solution route and their field emission," J. Cryst. Growth, vol. 310, pp. 3125-3130, 2008.
[3] Y. K. Su, C. M. Shen, H. T. Yang, H. L. Li, and H. J. Gao, "Controlled synthesis of highly ordered CuO nanowire arrays by template-based sol-gel route," Trans. Nonferrous Met. Soc. China, vol. 17, pp. 783-786, 2007.
[4] J. Hennemann, T. Sauerwald, C.-D. Kohl, T. Wagner, M. Bognitzki, and A. Greiner, "Electrospun copper oxide nanofibers for H2S dosimetry," Phys. Status Solidi A-Appl. Mat., vol. 209, pp. 911-916, 2012.
[5] P. Saravanan, S. Alam, and G. N. Mathur, "A liquid-liquid interface technique to form films of CuO nanowhiskers," Thin Solid Films, vol. 491, pp. 168-172, 2005.
[6] C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, "Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism," Appl. Phys. Lett., vol. 82, pp. 3316-3318, 2003.
[7] X. C. Jiang, T. Herricks, and Y. N. Xia, "CuO nanowires can be synthesized by heating copper substrates in air," Nano Lett., vol. 2, pp. 1333-1338, 2002.
[8] Y. W. Park, N. J. Seong, H. J. Jung, A. Chanda, and S. G. Yoon, "Growth Mechanism of the Copper Oxide Nanowires from Copper Thin Films Deposited on CuO-Buffered Silicon Substrate," J. Electrochem. Soc., vol. 157, pp. 119-124, 2010.
[9] R. S. Wagner and W. C. Ellis, " Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett., vol. 4, pp. 89-90, 1964.
[10] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, "Individual beta-Ga2O3 nanowires as solar-blind photodetectors," Appl. Phys. Lett., vol. 88, Art. no. 153107, 2006.
[11] Y. Cheng and O. Zhou, "Electron field emission from carbon nanotubes," C. R. Phys., vol. 4, pp. 1021-1033, 2003.
[12] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A., vol. 119, pp. 173-181, 1928.
[13] Donald A. Neamen, Semiconductor physics and devices: basic principles-3rd ed., McGraw-Hill, New York, 2003.
[14] C. Lai, X. Wang, Y. Zhao, H. Fong, and Z. Zhu, "Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers," RSC Adv., vol. 3, pp. 6640-6645, 2013.
[15] J. M. K. Nobbs, "Effect of water vapour on photoconductivity of zinc oxide," J. Phys. Chem. Solids, vol. 29, pp. 439-450, 1968.
[16] G. Y. Chai, L. Chow, O. Lupan, E. Rusu, G. I. Stratan, H. Heinrich, V. V. Ursaki, and I. M. Tiginyanu, "Fabrication and characterization of an individual ZnO microwire-based UV photodetector," Solid State Sci., vol. 13, pp. 1205-1210, 2011.
Chapter 3
[1] W. A. de Heer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission electron source", Science, vol. 270, pp. 1179-1180, 1995.
[2] Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Lin, K. S. Liu, and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films”, Adv. Funct. Mater., vol. 13, pp. 811-814, 2003.
[3] G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra “Self-catalytic growth and field-emission properties of Ga2O3 nanowires”, J. Phys. D: Appl. Phys., vol. 42, pp. 185409-6, 2009.
[4] J. M. Wu, H. C. Shih, and W. T. Wu, "Electron field emission from single crystalline TiO2 nanowires prepared by thermal evaporation", Chem. Phys. Lett., vol. 413, pp. 490-494, 2005.
[5] Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tam, J. T. L. Thong, and C. H. Sow, "Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films," Nanotechnol., vol. 16, pp. 88-92, 2005.
[6] B. Balamurugan and B. R. Mehta, "Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation," Thin Solid Films, vol. 396, pp. 90-96, 2001.
[7] C. T. Hsieh, J. M. Chen, H. H. Lin, and Shih H C, "Field emission from various CuO nanostructures", Appl. Phys. Lett., vol. 83, pp. 3383-3385, 2003.
[8] P. Saravanan, S. Alam, and G. N. Mathur, "A liquid-liquid interface technique to form films of CuO nanowhiskers", Thin Solid Films, vol. 491, pp. 168-172, 2005.
[9] C. M. Tsai, G. D. Chen, T. C. Tseng, C. Y. Lee, C. T. Huang, W. Y. Tsai, W. C. Yang, M. S. Yeh, and T. R. Yew, "CuO nanowire synthesis catalyzed by a CoWP nanofilter", Acta Mater., vol. 57, pp. 1570-1576, 2009.
[10] X. Jiang, T. Herricks, and Y. Xia, "CuO nanowires can be synthesized by heating copper substrates in air", Nano Lett., vol. 2, pp. 1333-1338, 2002.
[11] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-dimensional nanostructures: Synthesis, characterization, and applications", Adv. Mater., vol. 15, pp. 353-389, 2003.
[12] R. Z. Zhan, J. Chen, S. Z. Deng, and Xu N S, "Fabrication of gated CuO nanowire field emitter arrays for application in field emission display", J. Vac. Sci. Technol. B., vol. 28, pp. 558-561, 2010.
[13] H. T. Hsueh, T. J. Hsueh, S. J. Chang, T. Y. Tsai, F. Y. Hung, S. P. Chang, W. Y. Weng, and B. T. Dai, "CuO-nanowire field emitter prepared on glass substrate", IEEE Tran. Nanotechnol., vol. 10, pp. 1161-1165, 2011.
[14] C. H. Chen, S. J. Chang, S. P. Chang, Y. C. Tsai, I. C. Chen, T. J. Hsueh, and C. L. Hsu, "Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV", Chem. Phys. Lett., vol. 490, pp. 176-179, 2010.
[15] Y. L. Wu, S. J. Chang, C. H. Liu, W. Y. Weng, T. Y. Tsai, and C. L. Hsu, "UV enhanced field emission for β-Ga2O3 nanowires", IEEE Electron. Dev. Lett., vol. 34, pp. 701-703, 2013.
[16] F. Wakaya, T. Tatsumi, K. Murakami, S. Abo, M. Takai, T. Takimoto, and Y. Takaoka, "Effect of ultraviolet light irradiation on electron field emission from titanium-oxide nanostructures", J. Vac. Sci. Technol. B., vol. 29, Art. no. 02B110, 2011.
[17] J. Chen, N. Y. Huang, S. Z. Deng, She J C, Xu N S, Zhang W X, Wen X G, and Yang S H, "Effects of light illumination on field emission from CuO nanobelt arrays", Appl. Phys. Lett., vol. 86, 2005.
[18] H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, S. P. Chang, T. J. Hsueh, C. L. Hsu, and B. T. Dai, “Isopropyl alcohol sensors of CuO nanotubes by thermal oxidation of copper films on glass”, IEEE Sens. J., vol. 11, pp. 3276-3282, 2011.
[19] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A., vol. 119, pp. 173-181, 1928.
[20] Y. W. Zhu, A. M. Moo, T. Yu, X. J. Xu, X. Y. Gao, Y. J. Liu, C. T. Lim, Z. X. Shen, C. K. Ong, A. T. S. Wee, J. T. L. Thong, and C. H. Sow, "Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires," Chem. Phys. Lett., vol. 419, pp. 458-463, 2006.
[21] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature, vol. 415, pp. 617-620, 2002.
[22] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, pp. 242-246, 2006.
[23] Q. X. Zhang, K. Yu, W. Bai, Q. Y. Wang, F. Xu, Z. Q. Zhu, N. Dai, and Y. Sun, "Synthesis, optical and field emission properties of three different ZnO nanostructures," Mater. Lett., vol. 61, pp. 3890-3892, 2007.
[24] G. Liu, F. Li, D. W. Wang, D. M. Tang, C. Liu, X. Ma, G. Q. Lu, and H. M. Cheng, "Electron field emission of a nitrogen-doped TiO2 nanotube array," Nanotechnology, vol. 19, Art. no. 025606, 2008.
[25] G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, "Self-catalytic growth and field-emission properties of Ga2O3 nanowires," J. Phys. D: Appl. Phys., vol. 42, Art. no. 185409, 2009.
[26] L. Q. Hu, Z. X. Lin, T. L. Guo, L. Yao, J. J. Wang, C. H. Yang, Y.A. Zhang, and K. L. Zheng, "Field-emission properties of aligned and unaligned In2O3 nanowires," Acta Phys. Sin., vol. 55, pp. 6136-6140, 2006.
[27] W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, Y. H. Kim, K. H. Park, and S. Lee, "Field emission characteristics of CuO nanowires by hydrogen plasma treatment," Vacuum, vol. 81, pp. 851-856, 2007.
[28] W. Z. Wang, Q. Zhou, X. M. Fei, Y. B. He, P. C. Zhang, G. L. Zhang, L. Peng and W. J. Xie, "Synthesis of CuO nano- and micro-structures and their Raman spectroscopic studies," CrystEngComm, vol. 12, pp. 2232-2237, 2010.
[29] C. M. Tsai, G. D. Chen, T. C. Tseng, C. Y. Lee, C. T. Huang, W. Y. Tsai, W. C. Yang, M. S. Yeh, and T. R. Yew, "CuO nanowire synthesis catalyzed by a CoWP nanofilter," Acta Mater., vol. 57, pp. 1570-1576, 2009.
[30] L. Liqing, H. Kunquan, G. Xing, and X. Mingxiang, "Aligned CuO nanorod arrays: fabrication and anisotropic ferromagnetism," Appl. Phys. A:Mater. Sci. Process., vol. 115, pp. 1147-50, 2014.
[31] C. H. Xu, C. H. Woo, and S. Q. Shi, "Formation of CuO nanowires on Cu foil," Chem. Phys. Lett., vol. 399, pp. 62-66, 2004.
[32] Y. W. Park, N. J. Seong, H. J. Jung, A. Chanda, and S. G. Yoon, "Growth Mechanism of the Copper Oxide Nanowires from Copper Thin Films Deposited on CuO-Buffered Silicon Substrate," J. Electrochem. Soc., vol. 157, pp. 119-124, 2010.
[33] H.-T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, S. P. Chang, T. J. Hsueh, S. S. Lin, and B. T. Dai, "Isopropyl Alcohol Sensors of CuO Nanotubes by Thermal Oxidation of Copper Films on Glass," IEEE Sens. J., vol. 11, pp. 3276-3282, 2011.
[34] Y. W. Zhu, A. M. Moo, T. Yu, X. J. Xu, X. Y. Gao, Y. J. Liu, C. T. Lim, Z. X. Shen, C. K. Ong, A. T. S. Wee, J. T. L. Thong, and C. H. Sow, "Enhanced field emission from O2 and CF4 plasma-treated CuO nanowires," Chem. Phys. Lett., vol. 419, pp. 458-463, 2006.
[35] T. Y. Tsai, C. L. Hsu, S. J. Chang, S. I. Chen, H. T. Hsueh, and T. J. Hsueh, "Enhanced Field Electron Emission From Zinc-Doped CuO Nanowires," IEEE Electron Device Lett., vol. 33, pp. 887-889, 2012.
[36] X. H. Huang, Z. Y. Zhan, K. P. Pramoda, C. Zhang, L. X. Zheng, and S. J. Chua, "Correlating the enhancement of UV luminescence from solution-grown ZnO nanorods with hydrogen doping," CrystEngComm, vol. 14, pp. 5163-5165, 2012.
[37] Q. Yong, T. Staedler, and J. Xin, "Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma," Nanotechnology, vol. 18, Art. no. 035608, 2007.
[38] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A., vol. 119, pp. 173-181, 1928.
[39] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and T. Yu, "Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors," Nanotechnology, vol. 20, Art. no. 085203,2009.
[40] B. S. Khan, T. Mehmood, A. Mukhtar, and M. Tan, "Effect of workfunction on the growth of electrodeposited Cu, Ni and Co nanowires," Mater. Lett., vol. 137, pp. 13-16, 2014.
[41] J. Ding, M. Wang, X. Zhang, and C. Ran, "Field emission mechanism insights of graphene decorated with ZnO nanoparticles," RSC Adv., vol. 3, pp. 14073-14079, 2013.
[42] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, "Growth of nanowire superlattice structures for nanoscale photonics and electronics," Nature, vol. 415, pp. 617-620, 2002.
[43] Z. L. Wang and J. H. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays," Science, vol. 312, pp. 242-246, 2006.
[44] Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, "ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement," Chem. Phys. Lett., vol. 403, pp. 248-251, 2005.
[45] Y. K. Ko, J. Geng, S.-G. Jang, S.-M. Yang, T. W. Jeong, Y. W. Jin, J. M. Kim, and H. T. Jung, "Enhanced field emission of an electric field assisted single-walled carbon nanotube assembly in colloid interstices," Carbon, vol. 47, pp. 1555-1560, 2009.
[46] Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel nanostructures of functional oxides synthesized by thermal evaporation," Adv. Funct. Mater., vol. 13, pp. 9-24, 2003.
[47] C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng, and I. C. Chen, "Vertical single-crystal ZnO nanowires grown on ZnO : Ga/glass templates," IEEE Trans. Nanotechnol., vol. 4, pp. 649-654, 2005.
[48] B. R. Huang, J. C. Lin, T. C. Lin, and Y. J. Chen, "Aggregated TiO2 nanotubes with high field emission properties," Appl. Surf. Sci., vol. 311, pp. 339-343, 2014.
[49] H. T. Hsueh, W. Y. Weng, T. Y. Tsai, and S. J. Chang, "Electron-Field-Emission Properties of Gallium Compound by Ammonification of Ga2O3 Nanowires," IEEE Trans. Nanotechnol., vol. 12, pp. 692-695, 2013.
[50] W. Q. Yang, Z. R. Wei, M. Gao, Y. Chen, J. Xu, C. L. Chen, and Y. Lin, "Fabrication and field emission properties of needle-shaped MoO3 nanobelts," J. Alloys Compd., vol. 576, pp. 332-335, 2013.
[51] H. M. Fan, L. T. Yang, W. S. Hua, X. F. Wu, Z. Y. Wu, S. S. Xie, and B. S. Zou, "Controlled synthesis of monodispersed CuO nanocrystals," Nanotechnology, vol. 15, pp. 37–42, 2004.
[52] J. B. Reitz and E. I. Solomon, "Propylene oxidation on copper oxide surfaces:Electronic and geometric contributions to reactivity and selectivity," J. Amer. Chem. Soc., vol. 120, pp. 11467–11478, 1998.
[53] Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, "CuO nanowiregas sensors for air quality control in automotive cabin," Sens. ActuatorsB, Chem, vol. 135, pp. 298–303, 2008.
[54] Y. M. Juan, S. J. Chang, H. T. Hsueh, S. H. Wang, T. C. Cheng, S. W. Huang, and C. L. Hsu, "Electron field emission enhancement of hybrid Cu/CuO nanowires fabricated by rapid thermal reduction of CuO nanowires," RSC Adv., vol. 5, pp. 54220-54224, 2015.
[55] P. Saravanan, S. Alam, and G. N. Mathur, "A liquid-liquid interface technique to form films of CuO nanowhiskers," Thin Solid Films, vol. 491, pp. 168-172, 22 2005.
[56] C. M. Tsai, G. D. Chen, T. C. Tseng, C. Y. Lee, C. T. Huang, W. Y. Tsai, W. C. Yang, M. S. Yeh, and T. R. Yew, "CuO nanowire synthesis catalyzed by a CoWP nanofilter," Acta Mater., vol. 57, pp. 1570-1576, 2009.
[57] X. C. Jiang, T. Herricks, and Y. N. Xia, "CuO nanowires can be synthesized by heating copper substrates in air," Nano Lett., vol. 2, pp. 1333-1338, 2002.
[58] K. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J. Y. Chane-Ching, "Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate," Nanotechnology, vol. 18, Art. no. 275607, 2007.
[59] Y. W. Park, N. J. Seong, H. J. Jung, A. Chanda, and S. G. Yoon, "Growth Mechanism of the Copper Oxide Nanowires from Copper Thin Films Deposited on CuO-Buffered Silicon Substrate," J. Electrochem. Soc., vol. 157, pp. 119-124, 2010.
[60] M. J. de Boer, J. G. E. Gardeniers, H. V. Jansen, E. Smulders, M. J. Gilde, G. Roelofs, J. N. Sasserath, and M. Elwenspoek, "Guidelines for etching silicon MEMS structures using fluorine high-density plasmas at cryogenic temperatures," J. Microelectromech. Syst., vol. 11, pp. 385-401, 2002.
[61] Y. M. Juan, H. T. Hsueh, T. C. Cheng, C. W. Wu, and S. J. Chang, "Electron-Field-Emission Enhancement of CuO Nanowires by UV Illumination," ECS Solid State Lett., vol. 3, pp. 30-32, 2014.
[62] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A., vol. 119, pp. 173-181, 1928.
[63] L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J.X. Zhang, H. Gong, J. C. Li, and T. Yu, "Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors," Nanotechnology, vol. 20, Art. no. 085203, 2009.
[64] B. S. Khan, T. Mehmood, A. Mukhtar, and M. Tan, "Effect of workfunction on the growth of electrodeposited Cu, Ni and Co nanowires," Mater. Lett., vol. 137, pp. 13-16, 2014.
[65] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, "Morphological effects on the field emission of ZnO nanorod arrays," Appl. Phys. Lett., vol. 86, Art. no. 203115, 2005.
[66] T. Zhai, X. Fang, Y. Bando, Q. Liao, X. Xu, H. Zeng, Y. Ma, J. Yao, and D. Golberg, "Morphology-Dependent Stimulated Emission and Field Emission of Ordered CdS Nanostructure Arrays," ACS Nano, vol. 3, pp. 949-959, 2009.
[67] H. Yin, C. Song, Z. Wang, B. Guo, and K. Yu, "V2O5 nanoparticles grown on ZnO nanowires for enhanced field emission properties," Appl. Surf. Sci., vol. 345, pp. 256-263, 2015.
Chapter 4
[1] S. H. Song, H. H. Yang, C. H. Han, S. D. Ko, S. H. Lee, and J. B. Yoon, "Metal-oxide-semiconductor field effect transistor humidity sensor using surface conductance," Appl. Phys. Lett., vol. 100, Art no. 101603, 2012
[2] E. L. Tan, W. N. Ng, R. Shao, B. D. Pereles, and K. G. Ong, "A wireless, passive sensor for quantifying packaged food quality," Sensors, vol. 7, pp. 1747-1756, 2007.
[3] L. T. Chen, C. Y. Lee, and W. H. Cheng, "MEMS-based humidity sensor with integrated temperature compensation mechanism," Sens. Actuators A, vol. 147, pp. 552-528, 2008.
[4] A. K. Kalkan, H. D. Li, C. J. O'Brien, and S. J. Fonash, "A rapid-response, high-sensitivity nanophase humidity sensor for respiratory monitoring," IEEE Electron Device Lett., vol. 25, pp. 526-528, 2004.
[5] H. T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, C. L. Hsu, B. T. Dai, K. T. Lam, and K. H. Wen, "A Flexible ZnO Nanowire-Based Humidity Sensor," IEEE Trans. Nanotechnol., vol. 11, pp. 520-525, 2012.
[6] F. Liang, L. B. Luo, C. K. Tsang, L. Zheng, H. Cheng, and Y. Y. Li, "TiO2 nanotube-based field effect transistors and their application as humidity sensors," Mater. Res. Bull., vol. 47, pp. 54-58, 2012.
[7] N. K. Pandey, K. Tiwari, and A. Roy, "Ag Doped WO3 Nanomaterials as Relative Humidity Sensor," IEEE Sens. J., vol. 11, pp. 2911-2918, 2011.
[8] Q. Kuang, C. Lao, Z. L. Wang, Z. Xie, and L. Zheng, "High-sensitivity humidity sensor based on a single SnO2 nanowire," J. Am. Chem. Soc., vol. 129, pp. 6070-6071, 2007.
[9] C. Yuan, Y. Xu, Y. Deng, N. Jiang, N. He, and L. Dai, "CuO based inorganic-organic hybrid nanowires: a new type of highly sensitive humidity sensor," Nanotechnology, vol. 21, pp. 415501, 2010.
[10] J. S. Kim, H. E. Kim, H. L. Park, and G. C. Kim, "Luminescence intensity and color purity enhancement in nanostructured beta-Ga2O3 : Eu3+ phosphors," Solid State Commun., vol. 132, pp. 459-463, 2004.
[11] N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, "Synthesis and control of conductivity of ultraviolet transmitting beta-Ga2O3 single crystals," Appl. Phys. Lett., vol. 70, pp. 3561-3563, 1997.
[12] S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, "Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor," Appl. Phys. Lett., vol. 95, Art. no. 103102, 2009.
[13] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, "A Solar-Blind beta-Ga2O3 Nanowire Photodetector," IEEE Photonics Technol. Lett., vol. 22, pp. 709-711, 2010.
[14] K. Liu, M. Sakurai, and M. Aono, "Enhancing the Humidity Sensitivity of Ga2O3/SnO2 Core/Shell Microribbon by Applying Mechanical Strain and Its Application as a Flexible Strain Sensor," Small, vol. 8, pp. 3599-3604, 2012.
[15] C. Lai, X. Wang, Y. Zhao, H. Fong, and Z. Zhu, "Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers," RSC Adv., vol. 3, pp. 6640-6645, 2013.
[16] J. M. K. Nobbs, "Effect of water vapour on photoconductivity of zinc oxide," J. Phys. Chem. Solids, vol. 29, pp. 439-450, 1968.
[17] G. Y. Chai, L. Chow, O. Lupan, E. Rusu, G. I. Stratan, H. Heinrich, V. V. Ursaki, and I. M. Tiginyanu, "Fabrication and characterization of an individual ZnO microwire-based UV photodetector," Solid State Sci., vol. 13, pp. 1205-1210, 2011.
[18] J. A. Garrido, E. Monroy, I. Izpura, and E. Munoz, "Photoconductive gain modelling of GaN photoconductors," Semicond. Sci. Technol., vol. 13, pp. 563-568, 1998.
[19] C. L. Hsu, H. H. Li, and T. J. Hsueh, "Water- and Humidity-Enhanced UV Detector by Using p-Type La-Doped ZnO Nanowires on Flexible Polyimide Substrate," ACS Appl. Mater. Interfaces, vol. 5, pp. 11142-11151, 2013.
[20] J. M. Bao, I. Shalish, Z. H. Su, R. Gurwitz, F. Capasso, X. W. Wang, and Z. F. Ren, "Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires," Nanoscale Res. Lett., vol. 6, Art. no. 404, 2011.
[21] O. Lupan, G. Chai, L. Chow, G. A. Emelchenko, H. Heinrich, V. V. Ursaki, A. N. Gruzintsev, I. M. Tiginyanu, and A. N. Redkin, "Ultraviolet photoconductive sensor based on single ZnO nanowire," Phys. Status Solidi A-Appl. Mat., vol. 207, pp. 1735-1740, 2010.
[22] Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, "Photoconductivity of ultrathin zinc-oxide films," Jpn. J. Appl. Phys. Part 1, vol. 33, pp. 6611-6615, 1994.
[23] Q. H. Li, T. Gao, Y. G. Wang, and T. H. Wang, "Adsorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements," Appl. Phys. Lett., vol. 86, Art. no. 123117, 2005.
[24] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires," Appl. Phys. Lett., vol. 94, Art. no. 023110, 2009.
[25] J. Reemts and A. Kittel, "Persistent photoconductivity in highly porous ZnO films," J. Appl. Phys., vol. 101, Art. no. 013709, 2007.
[26] N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, "Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction," ACS Appl. Mater. Interfaces, vol. 2, pp. 1973-1979, 2010.
[27] D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, "Fabrication of beta-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology," Opt. Mater. Express, vol. 4, pp. 1067-1076, 2014.
[28] S. E. Ahn, J. S. Lee, H. Kim, S. Kim, B. H. Kang, K. H. Kim, and G. T. Kim, "Photoresponse of sol-gel-synthesized ZnO nanorods," Appl. Phys. Lett., vol. 84, pp. 5022-5024, 2004.
[29] J. B. K. Law and J. T. L. Thong, "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time," Appl. Phys. Lett., vol. 88, Art. no. 133114, 2006.
Chapter 5
[1] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, vol. 486, pp. 38-41, 2005.
[2] Y. Li, X. Hu, Z. Liu, and J. Ren, “Power and gas pressure effects on properties of amorphous In-Ga-ZnO films by magnetron sputtering”, J. Mater. Sci., Mater. Electron, vol. 23, pp. 408-412, 2011.
[3] Q. Yang, Y. Liu, Z. Li, Z. Yang, X. Wang, and Z. L. Wang, “Self-powered ultrasensitive nanowire photodetector driven by a hybridized microbial fuel cell”, Angew. Chem. Int. Ed., vol. 51, pp. 6443-6446, 2012.
[4] C. H. Shen, J. M. Sheih, T. T. Wu, J. Y. Huang, C. H. Huang, Y. H. Huang, T. C. Lu, B. T. Dai, C. Hu, and F. L. Yang, “CIGS solar cell integrated with high mobility microcrystalline Si TFTs on 30x40 cm2 glass panels for self-powered electronics”, Conference on Lasers and Electro-Optics, 2012.
[5] C.H. Shen, J. M. Shieh, H. C. Kuo, J. Y. Huang, W. H. Huang, C. W. Hsu, Y. H. Lin, H. Y. Chiu, H. Y. Jhan, B. T. Dai, C. T. Lee, C. L. Pan, C. Hu, and F. L. Yang, “Novel 140 °C hybrid thin film solar cell/Transistor technology with 9.6% conversion efficiency and 1.1 cm2/V-s electron mobility for low-temperature substrates”, IEDM, pp. 700-703, 2010.
[6] C. J. Chiu, W. Y. Weng, S. J. Chang, S. P. Chang, and T. H. Chang, “A deep UV sensitive Ta2O5/a-IGZO TFT”, IEEE Sensors J., vol. 11, pp. 2902-2905, 2011.
[7] C. J. Chiu. S. P. Chang, and S. J. Chang, “High-performance a-IGZO thin-film transistor using Ta2O5 gate dielectric”, IEEE Electron Device Lett., vol. 31, pp. 1245-1247, 2010.
[8] C. L. Roozeboom, M. A. Hopcroft, W. S. Smith, J. Y. Sim, D. A. Wickeraad, P. G. Hartwell, and B. L. Pruitt, “Integrated Multifunctional Environmental Sensors”, J Microelectromech Syst.,” vol. 22, pp.779-793, 2013.
[9] C. Y. Lee, W. Y. Fan, and C. P. Chang, A Novel Method for In-Situ Monitoring of Local Voltage, “Temperature and Humidity Distributions in Fuel Cells Using Flexible Multi-Functional Micro Sensors,” Sensors, vol. 11, pp.1418-1432, 2011.
[10] C. H. Shen, J. M. Shieh, H. C. Kuo, J. Y. Huang, W. H. Huang, C. W. Hsu, Y. H. Lin, H. Y. Chiu, H. Y. Jhan, B. T. Dai, C. T. Lee, C. L. Pan, C. M. Hu, and F. L. Yang, “Novel 140°C hybrid thin film solar cell/transistor technology with 9.6% conversion efficiency and 1.1 cm 2/V-s electron mobility for low-temperature substrates,” IEDM, pp.700-703, 2010.
[11] Y. Qing, L. Ying, L. Zetang, Y. Zongyin, W. Xue, and W. Z. Lin, “Self-Powered Ultrasensitive Nanowire Photodetector Driven by a Hybridized Microbial Fuel Cell,” Angew. Chem. Int. Ed., vol. 51, pp. 6443-6446, 2012.
[12] M. Bartic, M. Ogita, M. Isai, C. L. Baban, and H. Suzuki, “Oxygen sensing properties at high temperatures of beta-Ga2O3 thin films deposited by the chemical solution deposition method,” J. Appl. Phys., vol. 102, Art. no. 023709, 2007.
[13] K. Matsuzaki, H. Yanagi, T. Kamiya, H. Hiramatsu, K. Nomura, M. Hirano, and H. Hosono, “Field-induced current modulation in epitaxial film of deep-ultraviolet transparent oxide semiconductor Ga2O3,” Appl. Phys. Lett., vol. 88, pp. 092106, 2006.
[14] Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared beta-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett., vol. 90, Art. no. 031912, 2007.
[15] P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual beta-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett., vol. 88, Art. no. 153107, 2006.
[16] Y. F. Dong, L. Y. Li, W. F. Jiang, H. Y. Wang, and X. J. Li, “Capacitive humidity-sensing properties of electron-beam-evaporated nanophased WO3 film on silicon nanoporous pillar array,” Physica E, vol. 41, pp. 711-714, 2009.
[17] L. Li, Y. Zhang, X. S. Fang, T.Y. Zhai, M. Y. Liao, X. L. Sun, Y. Koide, Y. Bando, and D. Golberg, “WO3 nanowires on carbon papers: electronic transport, improved ultraviolet-light photodetectors and excellent field emitters,” J. Mater. Chem., vol. 21, pp. 6525-6530, 2011.
[18] G. Galbiati, V. D. Mihailetchi, R. Roescu, A. Halm, L. J. Koduvelikulathu, R. Kopecek, K. Peter, and J. Libal, “Large-Area Back-Contact Back-Junction Solar Cell With Efficiency Exceeding 21%,” IEEE J. Photovolt., vol. 3, pp. 560-565, 2013.
[19] J. M. Ortega, A. I. Martinez, D. R. Acosta, and C. R. Magana, “Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 2471-2479, 2006.
[20] M. Usta, S. Kahraman, F. Bayansal, and H. A. Cetinkara, “Effects of annealing on morphological, structural and electrical properties of thermally evaporated WO3 thin films,” Superlattices Microstruct., vol. 52, pp. 326-335, 2012.
[21] P. Chauhan, S. Annapoorni, and S. K. Trikha, “Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing,” Thin Solid Films, vol. 346, pp. 266-268, 1999.
[22] N. K. Pandey, K. Tiwari, and A. Roy, “Ag Doped WO3 Nanomaterials as Relative Humidity Sensor,” IEEE Sens. J., vol. 11, pp. 2911-2918, 2011.
[23] R. Sundaram and K.S. Nagaraja, “Solid state electrical conductivity and humidity sensing properties of WO3-Y2O3 composites,” Phys. Status Solidi A-Appl. Mat., vol. 201, pp. 529-535, 2004.
[24] D. Patil, Y. K. Seo, Y. K. Hwang, J. S. Chang, and P. Patil, “Humidity sensing properties of poly(o-anisidine)/WO3 composites,” Sens. Actuators, B, vol. 128, pp. 374-382, 2008.
[25] W. D. Lin, D. S. Lai, M. H. Chen, R. J. Wu, and F. C. Chen, “Evaluate humidity sensing properties of novel TiO2-WO3 composite material,” Mater. Res. Bull., vol. 48, pp. 3822-3828, 2013.
[26] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire ultraviolet photodetectors and optical switches,” Adv. Mater., vol. 14, pp. 158, 2002.
[27] Y. L. Wu, S. J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C Chen, “Ga2O3 Nanowire Photodetector Prepared on SiO2/Si Template,” IEEE Sens. J., vol. 13, pp. 2368-2673, 2013.
[28] D. Shao, M. Yu, J. Lian, and S. Sawyer, “Optoelectronic properties of three dimensional WO3 nanoshale and its application for UV sensing,” Opt. Mater., vol. 36, pp. 1002-1005, 2014.
[29] N. Liu, G. Fang, W. Zeng, H. Zhou, F. Cheng, Q. Zheng, L. Yuan, X. Zou, and X. Zhao, “Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction,” ACS Appl. Mater. Interfaces, vol. 2, pp. 1973-1979, 2010.
[30] D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in beta-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett., vol. 105, Art. no. 023507, 2014.
[31] W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A beta-Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film,” IEEE Sens. J., vol. 11, pp. 999-1003, 2011.
[32] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires,” Appl. Phys. Lett., vol. 94, Art. no. 023110, 2009.
[33] C. Lai, X. Wang, Y. Zhao, H. Fong, and Z. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers,” RSC Adv., vol. 3, pp. 6640-6645, 2013.
Chapter 6
[1] Y. Qin, T. Staedler, and X. Jiang, "Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma," Nanotechnology, vol. 18, Art. no. 035608, 2007.