| 研究生: |
邱柏順 Chiu, Po-Shun |
|---|---|
| 論文名稱: |
具有表面處理之三-氮族化合物半導體系列氫氣感測器之研製 Fabrication of III-Nitride Compound Semiconductor Based Hydrogen Gas Sensors with Surface Treatment |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 氮化鎵 、氫氣感測器 、鈀 、蕭特基二極體 |
| 外文關鍵詞: | hydrogen sensor, Pd, GaN, Schottky diode |
| 相關次數: | 點閱:72 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研製一系列氮化鎵蕭特基二極體式氫氣感測器元件,並予以材料表面不同時間之離子偶合電漿表面處理,主要重點在於經過電漿表面處理後所製作出來的元件具有在室溫環境下對於氫氣有高靈敏度以及其元件所具備之寬廣溫度操作範圍;本文所提出元件是在空氣環境下通入不同濃度氫氣來研究其氫氣感測及響應特性。
首先,我們製作並研究一未經表面處理之鈀金屬/氮化鎵半導體蕭特基二極體氫氣感測器,由於氮化鎵材料具有的寬能隙及良好的熱穩定度特性,相較於傳統矽半導體所研製的感測器,本文所提出之金屬/半導體式的氫氣感測器可得到在寬廣的溫度範圍下較佳的的感測靈敏度及較大的蕭特基能障變化。
接著,我們製作並研究一系列經由不同時間長度之離子偶合電漿表面處理的元件,經由實驗結果得知,經過表面處理之元件相較未經表面處理之元件具有較高的氫氣感測能力、以及較快的響應合恢復時間。
最後,針對各元件之表面我們予以不同的儀器分析進一步證實經過表面處理的表面特性具有特性的改變。儀器包括化學分析電子光譜儀、原子力顯微鏡、掃描式電子顯微鏡、靜態接觸角量測儀;經由實驗結果得知,在經過電漿表面處理後之元件表面顯示出與位經過電漿表面處理不同特性。
In this work, we present a series of GaN-based Schottky diode hydrogen-sensing devices. The ion-coupled-plasma treatments with different time are applied. This work demonstrates the improvement of sensing ability of devices after surface treatment and widespread operating temperature. The hydrogen sensing and response characteristics of studied devices under different-concentration hydrogen gases are investigated in air atmospheres.
Firstly, a Pd/GaN(MS) Schottky diode hydrogen sensor without plasma surface treatment is fabricated and investigated. Due to wide bandgap and superior thermal stability, the studied GaN-based diode-type hydrogen sensor exhibits higher detection sensitivity and larger Schottky barrier height variations over a wide temperature range as compared with conventional Si-based sensors.
Secondly, a series of devices with ion-coupled-plasma surface treatment with different time are fabricated and investigated. According to the experimental results, in comparison with the device without treatment, the studied devices with plasma surface treatment display larger current and Schottky barrier height variation and higher hydrogen detection capabilities under forward and reverse bias operation, and shorter response and recovery times.
Finally, the analyses are applied to examine the effects on surfaces with and without plasma surface treatment, including electron spectroscopy for chemical analysis (ESCA)、atomic force microscopic (AFM)、scanning electron microscope (SEM) and static contact angle instrument.
References
[1] N. Yamazoe, “Toward innovation of gas sensor technology,” Sens. Actuators B, vol. 108, pp. 2-14, 2005.
[2] R. C. Weast, Handbook of Chemistry and Physics, CRC Press, Cleveland, 1976, pp. D-107.
[3] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors,” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[4] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
[5] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly, and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol.18, pp. 779-784, 2002.
[6] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[7] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793 –799, 1988.
[8] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
[9] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol.2, pp. 431–440, 1997.
[10] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol, 18, pp. 287-289, 1997.
[11] C. C. Chang, and Y. E. Chen, “Fabrication of high sensitivity ZnO thin film ultrasonic devices by electrochemical etch techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, pp. 624-628, 1997.
[12] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Actuators B, vol. 85, pp. 10-18, 2002.
[13] M. Duffy, W. G. Hurley, J. Kubik, S. O’Reilly,and P. Ripka, “Current sensor in pcb technology,” Sensors, 2002 Proceedings of IEEE, vol. 18, pp. 779-784, 2002.
[14] A. Baranzahi, E. Janzen, O. Kordina, I. Lundstrom, A. L. Spetz, and P. Tobias, “Fast chemical sensing with metal-insulator silicon carbide structures,” IEEE Electron Device Lett., vol. 18, pp. 287-289, 1997.
[15] K. Hjort, “Micromechanics in indium phosphide for opto electrical applications,” Semiconductor Conference, 1997. CAS ‘97 Proceedings, 1997 International, vol. 2, pp. 431-440, 1997.
[16] P. T. Moseley, “Solid state gas sensors,” Meas. Sci. Technol., vol. 8, pp. 223-237, 1997.
[17] N. Yamazoe and N. Miuta, “Development of gas sensors for environmental protection,” IEEE Tran. Compo. Packag. Manuf. Technol. Part A vol. 18, pp. 252-256, 1995.
[18] A. Mandelis and C. Christofides, “Physics, chemistry and technology of solid state gas sensor devices, ,” ch 3, New York: John Wily & Sons (1993).
[19] S. T. Cho, K. Najafi, C. E. Lowman, and K. D. Wise, “An ultra sensitive silicon pressure-based microflow sensor,” IEEE Trans. Electron Devices, vol. 39, pp. 825-835, 1992.
[20] W. Gopel, J. Hesse, and J. N. Zemel, “Sensors,” vol. 1, ch 10, Weinheim: VCH press (1991).
[21] C. Christofides and A. Mandelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., vol. 68, pp. 1-30, 1990.
[22] W. J. Buttner, G. J. Maclay, and J. R. Stetter, “Microfabricated amperometric gas sensors, ” IEEE Trans. Electron Devices, vol. 35, pp. 793-799, 1988.
[23] S. R. Morrison, “Semiconductor Gas Sensors,” Sens. Actuators, vol. 2, pp. 329-341, 1982.
[24] I. Lundström, S. Shivaraman, C. Svensson, and L. Lundkvist, “A hydrogen-sensitive MOS field-effect transistor,” Appl. Phys. Lett., vol.26, pp. 55-57, 1975.
[25] H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd/GaAs Schottky Diodes Prepared by Electroless Plating Technique,” Semicond. Sci. Technol., vol. 18, pp. 620-626, 2003.
[26] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A New Hydrogen Sensor Based on a Pt/GaAs Schottky Diode,” J. Electrochem. Soc., vol. 138, pp. 159-161, 1991.
[27] M. Yousuf, B. Kuliyev, and B. Lalevic, “Pd-InP Schottky diode hydrogen sensors,” Solid-state. Electron., vol. 25, pp. 753-758, 1982.
[28] V. Battut, J. P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, “NO2 sensor based on InP epitaxial thin layers,” Thin Solid Films, vol. 348, pp. 266-272, 1999.
[29] H. I. Chen, Y. I. Chou, and C. K. Hsiung, “Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd/InP Schottky diode,” Sens. Actuators B, vol. 92, pp. 6-16, 2003.
[30] H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., vol. 19, pp. 39-44, 2004.
[31] V. Battut, J. P. Blanc, and C. Maleysson, “Gas sensitivity of InP epitaxial thin layers” Sens. Actuators B, vol. 44, pp. 503-506, 1997.
[32] Y. I. Chou, C. M. Chen, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,“ IEEE Electron Device Lett., vol. 26(2), pp. 62-65, 2005.
[33] H. J. Pan, K. W. Lin, K. H. Yu, C. C. Cheng, K. B. Thei, W. C. Liu, and H. I. Chen, “Highly hydrogen-sensitive Pd/InP metal-oxide-semiconductor Schottky diode hydrogen sensor,” IEE Electron. Lett., vol. 38, no.2, pp. 92-94, 2002
[34] A. L. Spetz, L. Nnëus, H. Svenningstrop, P. Toblas, L.-G. Ekedahl and O. Larsson et al., “SiC based field effect gas sensors for industrial applications,” Phys Status Solidi A, vol. 185, pp. 15–25, 2001.
[35] F. Solzbacher, C. Imawan, H. Steffes, E. Obermeier and M. Eickhoff, “A highly stable SiC based microhotplate NO2 gas-sensor, ” Sensor Actuat B, vol. 78, pp. 216–220, 2001.
[36] S. Roy, C. Jacob, and S. Basu, “Ohmic contacts to 3C–SiC for Schottky diode gas sensors,” Solid-State Electron, vol. 47, pp. 2035–2041, 2003.
[37] F. Qiu, M. Matsumiya, W. Shin, N. Izu and N. Murayama, “Investigation of thermoelectric hydrogen sensor based on SiGe film,” Sens. Actuators B, vol. 94, pp. 152-160, 2003.
[38] Y. Gurbuz, , W. P. Kang, J. L. Davidson, and D. V. Kerns, “Current Conduction Mechanism and Gas Adsorption Effects on Device Parameters of the Pt/SnO /Diamond Gas Sensor, ” IEEE Trans. Electron Devices., vol. 46, no.5, pp. 914-920, 1999.
[39] Y. Gurbuz, W. P. Kang, J. L. Davison, and D. V. Kerns, “Diamond microelectronic gas sensors,” Sens. Actuators B, vol. 33, pp. 100-104,1996.
[40] Y. Gurbuz, W. P. Kang, J. L. Davidson, and D. V. Kerns, “Analyzing the mechanism of hydrogen adsorption effects on diamond based MIS hydrogen sensors, ” Sens. Actuators B, vol. 36, pp. 68-72, 1996.
[41] B. P. Luther, S. D. Wolter and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN, ” Sensor Actuator B, vol. 56, pp. 164–168, 1999.
[42] J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes, ” Solid-State Electron, vol. 47, pp. 1069–1073, 2003.
[43] J. Song, W. Lu, J. S. Flynn, and G. R. Brandes, “AlGaN/GaN Schottky diode hydrogen sensor performance at high temperatures with different catalytic metals,” Solid-State Electronics, vol. 49, pp. 1330-1334, 2005.
[44] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga0.7As MOS Schottky diode,” Sens. Actuators B, vol. 99, pp. 425-430, 2004.
[45] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, W. H. Hsu, H. M. Chuang, Chun-Yuan Chen, and W. C. Liu, “Hydrogen sensing characteristics of Pd- and Pt-Al0.3Ga0.7As metal–semiconductor (MS) Schottky diodes,” Semicond. Sci. Technol., vol. 19, pp. 778-782, 2004.
[46] W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes for hydrogen detection,” J. Appl. Phys., vol. 75, no. 12, pp. 8175-8181, 1994.
[47] L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd, and Ir) for GaAs Schottky barrier sensors,” Sens. Actuators B, vol. 7, pp. 614-618, 1992.
[48] Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/lGaAs-based Schottky diodes”, IEEE Trans. Electron Devices, vol. 50, p.2532-2539, 2003.
[49] K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. T. Lu, and W. C. Liu, “Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen-sensing Schottky diode,” Sens. Actuators B. vol. 94, pp. 145-151, 2003.
[50] K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A Hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., vol. 18, pp. 615-619, 2003.
[51] D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs -platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol. B, vol. 1, no. 3, pp. 602-607, 1983.
[52] W. C. Liu, H. J. Pan, H. I Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen-sensitive characteristics of a novel Pd/InP metal-oxide-semiconductor (MOS) Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, vol. 48, pp. 1938-1944, 2001.
[53] H. I. Chen and Y. I. Chou, “ A comparative study on hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diodes,” Semicond. Sci. Technol., vol. 18, pp. 104-110, 2003.
[54] S. Okuyama, K. Umemoto, K. Okauyama, S. Ohshima, and K. Matsushita, ” Pd/Ni-Al2O3-Al tunnel diode as high-concentration-hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 1228-1232, 1997.
[55] S. Okuyama, H. Usami, K. Okauyama, H. Yamada, and K. Matsushita, ” Improved response time of Pd/Ni-Al2O3-Al tunnel diode hydrogen gas sensor,” J. Appl. Phys., vol. 36, pp. 6905-6908, 1997.D
[56] K. Mutamba, M. Flath, A. Sigurdardottir, A. Vogt, and H. L. Hartnagel, ” A GaAs pressure sensor with frequency output based on resonant tunneling diodes,” IEEE Trans. vol. 48, pp. 1333-1337, 1999.
[57] C. T. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd/oxide/Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electron Device Lett., vol. 24, pp. 390-392, 2003.
[58] L. Poteat and B. Lalevic, “Pd-MOS hydrogen and hydrocarbon sensor device, ” IEEE Electron Device Lett., vol. 2, pp. 32-34, 1981.
[59] O. Casals, B. Barcones, C. Serre, J. R. Morante, P. Godignon, J. Montserrat, and J. Mill′an, “Characterisation and stabilisation of Pt/TaSix/SiO2/SiC gas sensor, ” Sens. Actuators B, vol. 109, pp. 119-127, 2005.
[60] S. Pitcher, J. A. Thiele, H. Ren, and J. F. Vetelino, ”Current/voltage characteristics of a semiconductor metal oxide gas sensor, ”Sens. Actuators B, vol. 93, pp. 454-462, 2003.
[61] P. Salomonsson, E. Jobson, B. Häggendal, J. Nytomt, C. Carlsson, M. Glavmo, and A. Baranzahi, “Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases,” Sens. Actuators B, vol. 43, pp. 52-59, 1997.
[62] I. Lundström, “Hydrogen sensitive MOS-structures part1: principles and applications,” Sens. Actuators, vol. 1, pp. 403-426, 1981.
[63] C. C. Cheng, Y. Y. Tsai, K. W. Lin, H. I. Chen, and W. C. Liu, “Hydrogen sensing properties of a Pt-oxide-Al0.24Ga0.76As (MOS) high electron mobility transistor (HEMT),” Appl. Phys. Lett., vol. 86, 2005.
[64] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
[65] S. Batra, K. Park, S. Banerjee, D. Kwong, A. Tasch, M. Rodder, and R. Sundaresan, “Rapid thermal hydrogen passivation of polysilicon MOSFET’s,” IEEE Electron Device Lett., vol. 11, pp. 194-196, 1990.
[66] R. E. Stahlbush, “Interface defect formation in MOSFETs by atomic hydrogen exposure,” IEEE Trans. Nucl. Sci., vol. 41, pp. 1844-1853, 1994.
[67] T. Wang, C. Huang, P. C. Chou, S. S. S. Chung, and T. E. Chang, “Effect of hot carrier induced interface state generation in submicron LDD MOSFET’s,” IEEE Trans. Electron Devices, vol. 41, pp. 1618-1622, 1994.
[68] I. C. Kizilyalli, J. W. Lyding, and K. Hess, “ Deuterium post-metal annealing of MOSFET’s for improved hot carrier reliability,” IEEE Electron Device Lett., vol. 18, pp. 81-83, 1997.
[69] H. Seo, T. Endoh, H. Fukuda, and S. Nomura, “High sensitive MOSFET gas sensors with porous platinum gate electrode,” IEE Electron Lett., vol. 33, pp. 535-536, 1997.
[70] K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu, C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal–insulator–semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol, vol. 16, pp. 997-1001, 2001.
[71] G. Alefeld and J. Völkl, Hydrogen in metals I-basic properties, ch 12, Berlin; Springer-Verlag (1978).
[72] G. Alefeld and J. Völkl, Hydrogen in metals II-Application-oriented properties, ch 3, Berlin: Springer-Verlag, 1978.
[73] D. N. Jewett and A. C. Makrides, “Diffusion of hydrogen through palladium and palladium-silver alloy,” J. Chem. Soc. Faraday Trans. vol. 61, pp. 932-939, 1965.
[74] A. Salehi, A. Nikfarjam, and D.J. Kalantari, “Pd/porous-GaAs Schottky contact for hydrogen sensing application,” Sens Actuators B, vol. 113, pp. 419-427, 2006.
[75] J Schalwig, G Müller, U Karrer, M Eickhoff, O. Ambacher, M. Stutzmann, L.Görgens, and G. Dollinger, “Hydrogen response mechanism of Pt-GaN Schottky diodes,” Appl. Phys. Lett., vol. 80, pp. 1222-1224, 2002
[76] I. Lundström and L. G. Petersson, “Chemical sensors with catalytic metal gates,” J. Vac. Sci. Technol. A, vol. 14, pp.1539-1545, 1996.
[77] K. Zhu, V. Kuryatkov, B. Borisov, and G. Kipshidze, “Plasma etching of AlN/AlGaInN superlattices for devices fabrication,” Appl. Phys. Lett., vol.81, pp. 4688–4690, 2002.
[78] J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett., vol. 73, pp. 2953-2955, 1998.
[79] S. H. Kim, H. K. Kim, and T. Y. Seong, “Effect of hydrogen peroxide treatment on the characteristics of Pt Schottky contact on n-type ZnO,” Appl. Phys. Lett., vol. 86, 112101, 2005.
[80] J. K. Kim, and D. G. Lee, “Characteristics of plasma surface treated composite adhesive joints at high environmental temperature,” Composite Structures, vol. 57 , pp. 37–46, 2002.
[81] M. W. Moona, and A. Vaziri, “Surface modification of polymers using a
multi-step plasma treatment,” Scripta Materialia ,pp. 44-47, 2009.
[82] D. Lu, Y. Wu, J. Guo, G. Lu, Y. Wang, and J. Shen, “Surface treatment of indium tin oxide by oxygen-plasma for organic light-emitting diodes,” Materials Science and Engineering B ,vol.97, pp. 141-144, 2003.
[83] H. Hasegawa, Y. Koyama, and T. Hashizume, “Properties of metal-semiconductor interfaces formed on n-type GaN,” J. J. Appl. Phys., Part1 38 (4B) 2634–2639, 1999.
[84] H. Kim, N. M. Park, J. S. Jang, S. J. Park, and H. Hwang, “Effects of N2O Plasma Surface Treatment on the Electrical and Ohmic Contact Properties of n-Type GaN,” Electrochemical and Solid-State Letters, 4 ~11 G104-G106, 2001.
[85] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A. M. Hor ,and H. Aziz, “Surface electronic structure of plasma-treated indium tin oxides,” Appl. Phys. Lett., vol. 78, pp. 2595-2597, 2001.
[86] H. Kim, N. M. Park, J. S. Jang, S. J. Park, and H. Hwang, “Surface electronic structure of plasma-treated indium tin oxides,” Electrochemical and Solid-State Letters, vol.4, G104-106, 2001.
[87] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal ultraviolet photodetectors on GaN with submicro finger width,” IEEE Photonics Technol. Lett., vol. 15, pp. 1141-1143, August 2003.
[88] M. Mosca, J. L. Reverchon, N. Grandjean, and J. Y. Duboz, “Multilayer (Al,Ga)N structures for solar-blind detection, ” IEEE J. Sel. Top. Quantum Electron., vol. 10, pp. 752-758, 2004.
[89] S. T. Sheppard, K. Doverspike, W. L. Pribble, S. T. Allen, J. W. Palmour, L. T. Kehias, and T. J. Jenkins, “High-power microwave GaN/AlGaN HEMT’s on semi-insulating silicon carbide substrates,” IEEE Electron Device Lett., vol. 20, pp. 161-163, 1999.
[90] R. Gaska, Q. Chen, J. Yang, A. Qsinsky, M. Asif Khan, and M. S. Shur, “High-temperature performance of AlGaN/GaN HFET’s on SiC substrates,” IEEE Electron Device Lett., vol. 18, pp. 492-494, 1997.
[91] H. Norde, “A modified forward I-V plot for Schottky diodes with high series resistance,” J. Appl. Phys T., vol. 50, pp. 5052-5053, 1979.
[92] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. New York: Wiley, 1981, Ch2.
[93] T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S.Asami, N. Shibata, and M. Koike, “Schottky barriers and cntact resistances on p-type GaN,” Appl. Phys. Lett., Vol. 69, pp. 3537-3539, 1996.
[94] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Clarendon, Oxford, 1988.
[95] M. W. Cole, D. W. Eckart, W. Y. Han, R. L. Pfeffer, T. Monahan, F. Ren, C. Yuan, R. A. Stall, S. J. Pearton, Y. Li, and Y. Lu, “Thermal stability of W ohmic contacts to n-type GaN,” J. Appl. Phys., vol. 80, pp. 278-281, 1996.
[96] E. D. Palic and R. F. Wallis, “Infared cyclotron resonance in n-type InAs and InP,” Phys. Rev., vol. 123, pp. 131-134, 1961.
[97] D. J. Stukel and R. N. Euwema, “Energy-band structure of aluminum arsenide,” Phys. Rev., vol. 188, pp. 1193-1196, 1969.
[98] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “The water-forming reaction on palladium,” Surf. Sci., vol. 163, pp.77-100, 1985.
[99] L. G. Petersson, H. M. Dannetunn, and I. Lundström, “Water production on palladium in hydrogen-oxygen atmospheres,” Surf. Sci., vol. 163, pp.273-284, 1985.
[100] G. Z. Xiao, “Effects of solvents on the surface properties of oxygen plasma-treated polyethylene and polypropylene films,” J. Adhes. Sci. Technol, vol. 11, pp. 655–63, 1997.
[101] W. J. Brennan, W. J. Feast, H. S. Munro, S. A. Walker, “Investigation of the aging of plasma oxidized peek,” Polymer, vol. 32, pp. 1527–1530, 1990.
[102] I. Cimalla, F.Will, K. Tonisch, M. Niebelschütz, V. Cimalla, V. Lebedev, G. Kittler, M. Himmerlich, S. Krischok, J. A. Schaefer , M. Gebinoga, A. Schober, T. Friedrich,and O. Ambacher, “AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility,” Sens. Actuators B, vol.123, pp.740–748, 2007.
[103] M. Löfdahl, M. Eriksson, M. Johansson, and I. Lundström, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., vol. 91, pp. 4275-4280, 2002.
[104] J. R. Huang, W. C. Hsu, Y. J. Chen, T. B. Wang, K. W. Lin, H. I. Chen, and W. C. Liu, “ Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes,” Sensors and Actuators B, vol. 117, pp. 151–158, 2006.
[105] H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP sensor fabricated by electroless plating,” Sensors and Actuators B, vol. 85, pp. 10–18, 2002.