簡易檢索 / 詳目顯示

研究生: 蕭楠騰
Shiau, Nan-Teng
論文名稱: 利用偏壓輔助光電化學氧化法成長P型氮化鎵金氧半場效電晶體閘極介電層之製作與研究
Fabrication and Investigation of P-GaN MOSFETs with Gate Dielectrics Grown Using Bias-Assisted PEC Oxidation Method
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 78
中文關鍵詞: 光電化學氧化法P型氮化鎵低頻雜訊
外文關鍵詞: Low frequency noise, P-GaN, photoelectrochemical oxidation method
相關次數: 點閱:144下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在積體電路中,互補式金屬-氧化物-半導體(complementary metal-oxide-semiconductor, CMOS)元件是最重要的組成零件,而CMOS元件的基本組成包含n通道電晶體與p通道電晶體。若欲發展高性能之氮化鎵系列積體電路,製作高性能之n通道電晶體與p通道電晶體元件將是關鍵課題。一般氮化鎵金氧半場效電晶體之閘極氧化物大多使用蒸鍍或濺鍍方式製作而成,但此種氧化物容易受到蒸鍍或濺鍍製程條件而影響其品質。本論文使用偏壓輔助光電化學法(bias-assisted photoelectrochemical oxidation method) 直接氧化P型氮化鎵作為氮化鎵金屬-氧化物-半導體場效電晶體之閘極氧化層,可避免氮化鎵表面污染並降低氧半接面的介面態位密度。並以濺鍍儀(sputter)濺鍍二氧化矽作為對照組元件之閘極氧化層,分析元件直流電特性與低頻雜訊特性。
    電晶體元件之閘極氧化層為Ga2O3和SiO2,厚度為20nm,閘極電壓為0V,汲極電壓為-15V時,汲極電流分別為-272μA/mm與-144μA/mm。夾止電壓分別為9V與11V,最大外部轉移互導分別為76μS/mm與28μS/mm,在偏壓VGS=100V時漏電流分別為7.3×10-6A與1.8×10-5A。
    元件低頻雜訊方面,偏壓輔助光電化學法成長Ga2O3與濺鍍機成長SiO2之金氧半場效電晶體,VGS分別為-2 ~ 8V與-2 ~ 10V,虎格常數分別為0.3至9與0.8至38。由實驗得知電壓輔助光電化學法成長Ga2O3,得到較小的虎格常數。說明了使用偏壓輔助光電化學法直接在P型氮化鎵表面成長氧化層,不會因為外部蒸鍍或濺鍍條件所影響,使得半導體表面殘留的汙染物進而影響元件雜訊強度。
    為了解溫度對金氧半場效電晶體元件特性之影響,在本論文中對氧化層為Ga2O3氮化鎵金氧半場效電晶體直流電特性進行變溫量測。當溫度分別為25℃,75℃,125℃,175℃和200℃,在VGS= 0V,VDS= -15V時,IDS分別為-272μA/mm,-215μA/mm,-186μA/mm,-171μA/mm和-161μA/mm。夾止電壓分別為9V,8.8V,8.6V,8.4V和8.3V。最大外部轉移互導分別為76μS/mm,61μS/mm,53μS/mm,47μS/mm和41μS/mm。在偏壓VGS=100V時漏電流分別為7.3×10-6 A,1.1×10-5 A,2.2×10-5 A,5.2×10-5 A和1.6×10-4 A。
    氧化層為SiO2之金氧半場效電晶體元件,溫度分別為25℃,75℃,125℃,175℃和200℃,在VGS= 0V,VDS= -15V,IDS分別為-144μA/mm,-113μA/mm,-99μA/mm,-90μA/mm和-85μA/mm。夾止電壓分別為11V,10.8V,10.6V,10.4V和10.3V。最大外部轉移互導分別為28μS/mm,22μS/mm,19μS/mm,16μS/mm和15μS/mm。在偏壓VGS=100V時漏電流分別為1.8×10-5 A,2.8×10-5 A,5.1×10-5 A,1.2×10-4 A和3.2×10-4 A。
    在高溫低頻雜訊量測P-GaN MOSFETs,雜訊功率密度最大值會隨著量測溫度的增加而向高頻飄移,這是產生-復合雜訊所產生之結果。在量測之1/kTMAX與ln(f)特性,由實驗得到氧化層為Ga2O3與SiO2之P型氮化鎵金氧半場效電晶體之活化能Ea分別為0.94與0.92eV。虎格常數隨著溫度上升而增加,這是因為溫度上升導致電流擾動量增加,所以低頻雜訊上升。

    In integrated circuits, the complementary metal-oxide-semiconductor (CMOS) device is an important component and consisted of n-MOSFETs and p-MOSFETs. For fabricating high performance GaN-based integrated circuits, it is a key issue to fabricate high performance n-GaN MOSFETs and p-GaN MOSFETs. In general, the gate insulators are often deposited externally using evaporator or sputter system, and the performances of insulators are affected by the growth conditions. In this thesis, the bias-assisted photoelectrochemical oxidation method is used to oxidize p-GaN directly as gate oxide layers of p-GaN metal-oxide-semiconductor field-effect transistors for avoiding contaminants on GaN surface and decreasing the interface state density. The p-GaN MOSFETs with SiO2 films grown using sputter are also fabricated for contrast and analyze the direct-current electrical characteristics and low frequency noise properties of both devices.
    The drain-source saturation current at room temperature of transistors with 20-nm-thick Ga2O3 and SiO2 films at VGS= 0V and VDS= -15V is -272μA/mm and -144μA/mm, respectively. The threshold voltage is 9V and 11V, respectively. The maximum extrinsic transconductance (gm(max)) is 76μS/mm and 28μS/mm, respectively. At VGS= 100V, gate leakage current is 7.3×10-6A and 1.8×10-5A, respectively.
    According to the low frequency noise results measured in this thesis, the Hooge’s coefficients of transistors with oxide films grown by photo-assisted photoelectrochemical oxidation method and sputter deposited externally were estimated to be 0.3 ~ 9 and 0.8 ~ 38, when VGS varied from -2 ~ 8V and -2 ~ 10V, respectively. The bias-assisted photoelectrochemical oxidation method can oxidize p-GaN directly as gate oxide layers of p-GaN metal-oxide-semiconductor field-effect transistors for avoiding contaminants on GaN surface and decreasing the interface state density.
    To analyze the relationship between the temperature and the electrical performances, the electrical properties of p-GaN MOSFETs with Ga2O3 gate dielectrics are measured at varied temperatures. At VGS= 0V and VDS= -15V, the IDS is -272μA/mm, -215μA/mm, -186μA/mm, -171μA/mm and -161μA/mm, respectively when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. The threshold voltage is 9V, 8.8V, 8.6V, 8.4V and 8.3V, respectively, when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. The maximum extrinsic transconductance (gm(max)) is 76μS/mm,61μS/mm,53μS/mm,47μS/mm and 41μS/mm, respectively, when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. At VGS= 100V, gate leakage current is 7.3×10-6A, 1.1×10-5A, 2.2×10-5 A, 5.2×10-5 A, and 1.6×10-4 A, respectively.
    To analyze the relationship between the temperature and the electrical performances, the electrical properties of p-GaN MOSFETs with SiO2 gate dielectrics are measured at varied temperatures. At VGS= 0V and VDS= -15V, the IDS is -144μA/mm, -113μA/mm, -99μA/mm, -90μA/mm and -85μA/mm, respectively when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. The threshold voltage is 11V, 10.8V, 10.6V, 10.4V and 10.3V, respectively, when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. The maximum extrinsic transconductance (gm(max)) is 28μS/mm, 22μS/mm, 19μS/mm, 16μS/mm and 15μS/mm, respectively, when the temperature is 25oC, 75 oC, 125 oC, 175 oC and 200 oC. At VGS= 100V, gate leakage current is 1.8×10-5 A, 2.8×10-5 A, 5.1×10-5 A, 1.2×10-4 A, and 3.2×10-4 A, respectively.
    The low frequency noise performances of transistors operated at high temperature were measured in this thesis. The temperature corresponded to the maximum noise value (Tmax) increases with frequency and that is a typical for the generation-recombination noise caused by a location level. The local levels of transistors with oxide films grown by photo-assisted photoelectrochemical oxidation method and sputter deposited externally were estimated to be 0.94 and 0.92, respectively. The increasing of Hooge¢s coefficient is attributed to the increasing of the level of low frequency noise caused by serious phonon as higher temperature.

    中文摘要................................................................................ I 英文摘要................................................................................ IV 致謝........................................................................................ VIII 目錄........................................................................................ IX 表目錄.................................................................................... XII 圖目錄.................................................................................... XIII 第一章 簡介............................................................................ 1 1.1 氮化鎵系列材料........................................................... 1 1.2 研究動機....................................................................... 2 第二章 原理............................................................................ 9 2.1 蝕刻原理....................................................................... 9 2.1.1 乾式蝕刻................................................................ 9 2.1.2 濕式蝕刻................................................................ 10 2.2 光電化學法(PEC)原理................................................. 11 2.2.1 PEC 蝕刻................................................................. 11 2.2.2 PEC 氧化................................................................. 12 2.3 氯氣處理....................................................................... 14 2.4 低頻雜訊原理............................................................... 15 2.4.1 產生−復合雜訊....................................................... 16 2.4.2 閃爍雜訊................................................................. 17 第三章 製程............................................................................ 28 3.1 試片結構....................................................................... 28 3.2 實驗架構....................................................................... 28 3.2.1 平台隔離................................................................ 28 3.2.2 偏壓輔助光電化學氧化法成長氧化層................ 28 3.2.3 氯氣處理................................................................ 29 3.3 元件製程....................................................................... 29 3.3.1 平台隔離................................................................ 29 3.3.2 成長氧化層............................................................ 31 3.3.3 氧化層高溫熱處理................................................ 31 3.3.4 氯氣處理................................................................ 32 3.3.5 歐姆接觸................................................................ 32 3.3.6 閘極製作................................................................ 33 3.4 元件完成圖................................................................... 35 第四章 結果與討論................................................................ 46 4.1 直流特性量測............................................................... 46 4.1.1 IDS-VDS 特性............................................................ 46 4.1.2 gm-VGS 特性量測與分析......................................... 48 4.1.3 閘極漏電流............................................................ 48 4.1.4 低頻雜訊................................................................ 49 4.2 變溫直流特性量測....................................................... 51 4.2.1 變溫IDS-VDS 特性................................................... 51 4.2.2 變溫gm-VGS 特性................................................... 52 4.2.3 變溫閘極漏電流.................................................... 53 4.3 高溫低頻雜訊............................................................... 54 第五章 結論............................................................................ 75 5.1 結論............................................................................... 75

    第一章
    [1] P. S. Chen, C. S. Lee, J. T. Yan and C. T. Lee, “Performance Improvement and Mechanism of Chlorine-Treated InGaN-GaN Light-Emitting Diodes,” Electrochem. Solid State Lett., vol. 10, pp. H165-H167, 2007.
    [2] J. Y. Kim, M. K. Kwon, K. S. Lee, S. J. Park, S. H. Kim, and K. D. Lee, “Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal”, Appl. Phys. Lett., vol. 91, pp. (181109-1)-(181109-3), 2007.
    [3] X. H. Wang, H. Q. Jia, L. W. Guo, Z. G. Xing, X. J. Pei, J. M. Zhou, and H. Chen, “White light-emitting diodes based on a single InGaN emission layer”, Appl. Phys. Lett., vol. 91, pp. (161912-1)-(161912-3), 2007.
    [4] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 18, pp. 2029-2031, 2006.
    [5] K. Okamoto, T. Tanaka, M. Kubota, and H. Ohta, “Pure blue light diodes based on nonpolar m-plane Gallium Nitride with InGaN waveguiding layer”, Jpn. J. Appl. Phys., vol. 46, pp. L820-L822, 2007.
    [6] C. T. Lee, C. C. Lin, H. Y. Lee, and P. S. Chen, “Changes in surface state density due to chlorine treatment in GaN Schottky ultraviolet photodetectors”, J. Appl. Phys., vol. 103, pp. (094504-1)-(094504-4), 2008.
    [7] S. S. Islam, A. F. M. Anwar, and R. T. Webster, “A Physics-based frequency dispersion model of GaN MESFETs”, IEEE Trans. Electron Device, vol. 51, pp. 846-853, 2004.
    [8] J. G. Felbinger, M. V. S. Chandra, Y. Sun, L. F. Eastman, J. Wasserbauer, F. Faili, D. Babic, D. Francis, and F. Ejeckam, “Comparison of GaN HEMTs on diamond and SiC substrates”, IEEE Electron Device Lett., vol. 28, pp. 948-950, 2007.
    [9] M. Higashiwaki, T. Mimura, and T. Matsui, “AlN/GaN insulated-gate HFETs using cat-CVD SiN,” IEEE Electron Device Lett., vol. 27, pp. 719-721, 2006.
    [10] J. Kim, B. P. Gila, R. Mehandru, B. Luo, A. H. Onstine, C. R. Abernathy, F. Ren, K. K. Allums, R. Dwivedi, T. N. Forgarty, R. Wilkins, Y. Irokawa, and S. J. Pearton, “High-energy proton irradiation of MgO/GaN metal oxide semiconductor diodes,” Electrochem. Solid State Lett., vol. 5, pp. G57-G59, 2002.
    [11] G. Pozzovivo, J. Kuzmik, S. Golka, W. Schrenk, G. Strasser, D. Pogany, K. Čičo, M. Ťapajna, K. Frőhlich, J. F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, “Gate insulator and drain current saturation mechanism in InAlN/GaN metal-oxide-semiconductor high-electron-mobility transistors” Appl. Phys. Lett., vol. 91, pp. (043509-1)-(043509-3), 2007.
    [12] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., vol. 68, pp. 1850-1852, 1996.
    [13] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2 /n-GaN and Si3N4 /n-GaN insulator -semiconductor interfaces with low interface state density,” Appl. Phys. Lett., vol. 73, pp. 809-811, 1998.
    [14] B. Gaffey, Louis J. Guido, X. W. Wang, and T. P. Ma, “High-Quality Oxide/Nitride/Oxide Gate Insulator for GaN MIS Structures,” IEEE Trans. Electron Devices, vol. 48, pp. 458-464, 2001.
    [15] L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu, and J. K. Sheu, “High-dielectric-constant Ta2O5/n-GaN metal-oxide-
    semiconductor structure,” Appl. Phys. Lett., vol. 77, pp. 3788-3790, 2000.
    [16] Tamotsu Hashizume, Egor Alekseev, Dimitris Pavlidis, Karim S. Boutros, and Joan Redwing, “Capacitance–voltage characterization of AlN/GaNmetal–insulator–semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition,” Appl. Phys. Lett, vol. 88, pp. 1983-1986, 2000.
    [17] T. S. Lay, W. D. Liu, M. Hong, J. Kwo, and J. P. Mannaerts, “C-V and G-V characterisation of Ga2O3(Gd2O3)/GaN capacitor with low interface state density,” Electron. Lett., vol. 37, pp. 595-597, 2001.
    [18] C. T. Lee, H. W. Chen, F. T. Hwang, and H. Y. Lee, “Investigation of Ga oxide films directly grown on n-type GaN by photoelectrichemical oxidation using He-Cd laser,” J. Electron. Mater., vol. 34, pp. 282-286, 2005.
    [19] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., vol. 82, pp. 4304-4306, 2003.
    [20] L. H. Huang, and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with oxidized layer grown using photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. H862-H866, 2007.
    [21] L. H. Huang, S. H. Yeh, C. T. Lee, H. Tang, J. Bardwell, and J. B. Webb, “AlGaN/GaN metal-oxide-semiconductor high-Electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” IEEE Electron Device Lett., vol. 29, pp. 284-286, 2008.
    [22] L. H. Huang, S. H. Yeh, and C. T. Lee, “AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors using oxide insulator grown by photoelectrochemical oxidation method,” Appl. Phys. Lett., vol. 93, pp. (043511-1)-(043511-3), 2008.
    [23] L. H. Huang, K. C. Kan, and C. T. Lee, “Analysis of oxidized p-GaN films directly grown using bias-assisted photoelectrochemical method,” J. Electron. Mater., vol. 38, pp. 529-532, 2009.

    第二章
    [1]半導體製造技術(Semiconductor Manufacturing Technology) Michael Quirk, Julian Serda著,劉文超.許渭州 校閱,羅文雄.蔡榮輝.鄭岫盈 譯。
    [2] Z. Z. Chen, Z. X. Qin, Y. Z. Tong, X. M. Ding, X. D. Hu, T. J. Yu, Z. J. Yang, and G. Y. Zhang, “Etching damage and its recovery in n-GaN by reactive ion etching” Physica B., vol. 334, pp. 188-192, 2003.
    [3] C. Y. Fang, W. J. Huang, E. Y. Chang, C. F. Lin, and M. S. Feng, “Etching damages on AlGaN, GaN and InGaN caused by hybrid inductively coupled plasma etch and photoenhanced chemical wet etch by schottky contact characterization,” Jpn. J. Appl. Phys., vol. 42, pp. 4207-4212, 2003.
    [4]半導體元件物理與製程技術(Semiconductor devices physics and technology 2rd edition) 施敏 原著,黃調元 譯。
    [5] S. J. Pearton, J. C. Zolper, R. J. Shul and F. Ren, “GaN: Processing, defects, and devices” J. Appl. Phys., vol. 86, pp. 1-78, 1999.
    [6]C. Youtsey, I. Adesida and G. Bulman, “Highly anisotropic photoenhanced wet etching of n-type GaN”, Appl. Phys. Lett., vol. 71, pp. 2151-2153, 1997.
    [7] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, V. Schwegler, C. Kirchner, M. Kamp, and M. Heuken, “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions”, Appl. Phys.Lett., vol. 76, pp. 3923-3925, 2000.
    [8] E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch, and J.M.Woodall,“Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer”, Appl. Phys. Lett., vol. 68, pp. 1678-1680 , 1996.
    [9] J. E. Borton, C. Cai and M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, “Bias-assisted photoelectrochemical etching of p-GaN at 300 K”, Appl. Phys. Lett., vol. 77, pp. 1227-1229, 2000.
    [10] J. P. Long, and V. M. Bermudez, “Band bending and photoemission-induced surface photovoltages on clean n- and p-GaN (0001) surfaces”, Physica B., vol. 66, pp. (121308-1)- (121308-4), 2002.
    [11] Dieter K. Schroder, “Semiconductor Material and Device Characterization”, pp. 339, 2006.
    [12] L. H. Huang, K. C. Kan, and C. T. Lee, “Analysis of oxidized p-GaN films directly grown using bias-assisted photoelectrochemical method”, J. Electron. Mater, vol. 38, pp. 529-532, 2009.
    [13] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., vol. 76, pp. 2364-2366, 2000.
    [14] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. Salamanca-Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN”, J. Appl. Phys., vol. 89, pp. 6214-6217, 2001.
    [15] Y. J. Lin, H. Y. Lee, F. T. Hwang, and C. T. Lee, “Low resistive ohmic contact formation on surface treated-n-GaN alloyed at low temperature”, J. Electron. Mater., vol. 30, pp. 532-537, 2001.
    [16] Y. J. Lin, C. D. Tsai, Y. T. Lyu, and C. T. Lee, “X-ray photoelectron spectroscopy study of (NH4)2Sx-treated Mg-doped GaN layers”, Appl. Phys. Lett., vol. 77, pp. 687-689, 2000.
    [17] P. S. Chen, C. S. Lee, J. T. Yan, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN–GaN light-emitting diodes”, Electrochem. Solid State Lett., vol. 10, pp. H165-H167, 2007.
    [18] P. S. Chen, and C. T. Lee, “Investigation of ohmic mechanism for chlorine-treated p-type GaN using x-ray photoelectron spectroscopy”, J. Appl. Phys., vol. 100, pp. (044510-1)-(044510-4), 2006.
    [19] Alfredo Arnaud and Carlo Galup-Montoro, “A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Trans. Electron Devices, vol. 50, pp. 1815-1818, 2003.
    [20] L. K. J. Vandamme, Xiaosong Li and Dominique Rigaud, “1/f noise in MOS devices, mobility or number fluctuations,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
    [21] K. K. Hung, P. K. Ko, C. Hu and Y. C. Cheng, “Flicker noise characteristics of advanced MOS technology,” IEEE IEDM, vol. 88, pp. 34-37, 1988.
    [22] Fan-Chi Hou, Gijs Bosman and Mark E. Law, “Simulation of oxide trapping noise in submicron n-channel MOSFETs,” IEEE Trans. Electron Devices, vol. 50, pp. 846-852, 2003.

    第三章
    [1] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN,” Appl. Phys. Lett., vol. 76, pp. 2364-2366, 2000.
    [2] D. F. Wang, F. Shiwei, C. Lu, A. Motayed, M. Jah, S. N. Mohammad, K. A. Jones, and L. Salamanca-Riba, “Low-resistance Ti/Al/Ti/Au multilayer ohmic contact to n-GaN,” J. Appl. Phys., vol. 89, pp. 6214-6217, 2001.
    [3] Y. J. Lin, H. Y. Lee, F. T. Hwang, and C. T. Lee, “Low resistive ohmic contact formation on surface treated-n-GaN alloyed at low temperature,” J. Electron. Mater., vol. 30, pp. 532-537, 2001.
    [4] P. S. Chen, and C. T. Lee, “Investigation of ohmic mechanism for chlorine-treated p-type GaN using x-ray photoelectron spectroscopy,” J. Appl. Phys., vol. 100, pp. (044510-1)-(044510-4), 2006.
    [5] P. S. Chen, C. S. Lee, and C. T. Lee, “Performance improvement and mechanism of chlorine-treated InGaN–GaN light-emitting diodes,” Electrochem. Solid State Lett., vol. 10, pp. H165-H167, 2007.
    [6]譚偉文(Wei-WenTan), “Investigation of electrical properties of Photoelectrochemistry oxide film formation on n-type GaN MOSFETs,” 成大微電子所碩士論文, 2005.
    [7] L. H. Huang, K. C. Kan, and C. T. Lee, “Analysis of oxidized p-GaN films directly grown using bias-assisted Photoelectrochemical Method,” J. Electron. Mater., vol. 38, pp. 529-532, 2009.

    第四章
    [1] J. M. Peransin, P. Vignaud, D. Rigaud, and L. K. J. Vandamme, “1/f noise in MODFET’s at low drain bias”, IEEE Trans. Electron Devices, vol. 37, pp. 2250-2253, 1990.
    [2] D. Sodini, A. Touboul, G. Lecoy, and M. Savelli, “Generation-recombination noise in the channel of GaAs schottky-gate field-effect transistors”, Electron. Lett., vol. 12, pp. 42-43, 1976.
    [3] F. J. Scholz, J. M. Hwang, and D. K. Schroeder, “Low frequency noise and DLTS as semiconductor device characterization tools”, Solid State Electron, vol. 31, pp. 205-217, 1988.
    [4] M. E. Levinshtein, and S. L. Rumyantsev, “Noise spectroscopy of local levels in semiconductors”, Semicond. Sci. Technol, vol. 9, pp. 1183-1189, 1994.
    [5] Alexander A. Balandin, “Noise and fluctuations control in electronic devices”, pp. 51, 2002.
    [6] S. L. Rumyantsev, N. Pala, M. S. Shur, E. Borovitskaya, A. P. Dmitriev, M. E. Levinshtein, R. Gaska, M. Asif Khan, J. Yang, X. Hu, and G. Simin, “Generation-recombination noise in GaN/AlGaN Heterostructure field effect transistors”, IEEE Trans. Electron Devices, vol. 48, pp. 530-534, 2001.
    [7] N. Pala, S. L. Rumyantsev, M. S. Shur, M. E. Levinshtein, M. Asif Khan, G. Simin, and R. Gaska, “Generation-recombination noise in GaN and GaN-based devices”, Proc. SPIE, vol. 5113, pp. 217-231, 2003.

    下載圖示 校內:2010-06-30公開
    校外:2010-06-30公開
    QR CODE