簡易檢索 / 詳目顯示

研究生: 吳孟桓
Wu, Meng-Huan
論文名稱: 具寬紅外光子能隙之膽固醇液晶模板於節能玻璃之研究與應用
Energy-saving windows with broad photonic bandgap in infrared region based on enantiomorphic cholesteric liquid crystal templates
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 60
中文關鍵詞: 紅外光反射器液晶膽固醇液晶模板高反射率光子能隙
外文關鍵詞: IR reflectors, liquid crystal, cholesteric liquid crystal polymer template, hyper-reflective photonic bandgap
相關次數: 點閱:112下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽光中紅外光波長範圍為780 nm至1 mm,而其中780 nm至1500 nm佔據了紅外光總能量的85%,這波段的光會使地球上的物質(例如:空氣、人體、建築物)分子振動而產生熱,因此如何不損耗額外的能源隔絕紅外光,且此隔絕元件又能不影響可見光穿透度,以達到作為智慧節能的綠建材,是一個值得探討的議題。
    本篇論文利用膽固醇液晶模板技術搭配特殊製程,製作出具備縱向螺距梯度以及可同時反射左右圓偏振之高反射率寬頻帶紅外光子能隙元件,其反射率可達80%以上,光子能隙波段涵蓋800 nm至1500 nm,且仍保有可見光波段的穿透度,因此可作為智慧節能玻璃。在冬季的太陽光底下實際測量發現,與一般玻璃相比,此元件能有效降低密閉空間內的溫度約攝氏2至3度。未來,期望可將此膽固醇結構利用3D列印技術寫在玻璃窗上,做為真正的綠建材。

    Infrared (IR) light from the sun spans from 780 nm to ~1 mm, and more than 85% of its energy lies between 800 nm to 1500 nm. IR reflectors or absorbers are very important as smart windows in eco-friendly buildings, because these devices can filter out IR light and control access of solar energy to regulate indoor temperature and maintain interior illumination. In this study, cholesteric liquid crystal (CLC) template technique was employed to fabricate a high-quality polymeric IR reflector.
    The IR photonic bandgap (PBG) reflector was fabricated through the CLC polymer template (washing out/refilling) technique. The fabrication involved four stages, namely, the before-curing, after-curing, after-washing-out, and after-refilling stages. A CLC template cell with a broadband reflection was fabricated using weak UV light-induced longitudinal pitch gradient, which leads to the broadening of PBG. In addition, a highly reflective IR mirror was achieved by adopting a single-layer CLC template film with a double-spiral photonic structure. Finally, an IR reflector of CLC polymer was successfully produced. The device reflected more than 80% of the incoming IR light from 800 nm to 1500 nm and retained acceptable transmittance in the visible region. The thermal insulation test shows that a considerable amount of incident and unwanted heat could be reflected. Therefore, a significant amount of energy could be saved on cooling temperature up to 2–3 °C and maintain interior illumination. The structure proposed in this study might be written on windows by 3D printing technique in the future as eco-friendly building materials.

    摘要 I Abstract II Acknowledgements III Contents IV List of Figures VI List of Tables XI Chapter 1 Introduction 1 Chapter 2 Characteristics of liquid crystals 3 2-1 Origin of the Liquid Crystals 3 2-2 Classification of Liquid Crystals 4 2-2-1 Lyotropic Liquid Crystals 4 2-2-2 Thermotropic Liquid Crystals 4 2-3 The Physical Characteristics of Liquid Crystal 10 2-3-1 Birefringence and Optical Anisotropy 10 2-3-2 Dielectric Anisotropy 13 2-3-3 Elastic Continuum Theory of Liquid Crystals 15 Chapter 3 Cholesteric liquid crystals and polymer templates 17 3-1 Optical properties of cholesteric liquid crystals 17 3-2 Influences of various factors on the pitch 19 3-2-1 Concentration of chiral dopants 19 3-2-2 Temperature 20 3-2-3 Magnetic and electric fields 20 3-2-3 Optical field 23 3-3 Liquid crystalline polymer template 23 3-3-1 Addition polymerization 23 3-3-2 Fabrication of CLC polymer template 25 Chapter 4 Sample fabrication and measuring instruments 27 4-1 Materials 27 4-2 Sample preparation 30 4-2-1 Preparation of ITO glass substrates 30 4-2-2 Fabrication of empty cells 31 4-2-3 Mixture for fabrication of CLC polymer template 31 4-2-4 Fabrication of NLC-refilling CLC polymer template cells 32 4-3 Measuring Instruments 37 Chapter 5 Results and discussion 39 5-1 PBG properties of template samples with a longitudinal pitch gradient 39 5-2 Fabrications of CLC templates for IR regimes 41 5-3 Enantiomorphic CLC template for IR regimes 46 5-3-1 Single-layered enantiomorphic CLC polymer 46 5-3-2 Comparison of enantiomorphic and single-handed CLC templates 48 5-3-3 Double-layered enantiomorphic CLC template with ultra-wide reflection band 51 5-3-4 Thermal insulation test 52 Chapter 6 Conclusion and Future Works 55 6-1 Conclusion 55 6-2 Future works 55 References 57

    1.P. G. de Gennes and J. Prost, The Physics of Liquid Crystals. (Clarendon Press, New York, 1993), Second edition.

    2.L. Zhang, K. Li, W. Hu, H. Cao, Z. Cheng, W. He, J. Xiao & H. Yang, "Broadband reflection mechanism of polymer stabilised cholesteric liquid crystal (PSChLC) with pitch gradient," Liquid Crystals 38(6), 673-677 (2011).

    3.Hitesh Khandelwal, Roel C. G. M. Loonen, Jan L. M. Hensen, Albertus P. H. J. Schenning and Michael G. Debije, "Application of broadband infrared reflector based on cholesteric liquid crystal polymer bilayer film to windows and its impact on reducing the energy consumption in buildings," Journal of Materials Chemistry A 2(35), 14622–14627 (2014).

    4.Y. Gao, W. Yao, J. Sun, H. Zhang, Z. Wang, L. Wang, D. Yang, L. Zhang and H. Yang, "A novel soft matter composite material for energy-saving smart windows: from preparation to device application," Journal of Materials Chemistry A 3(20), 10738–10746 (2015).

    5.H. Khandelwal, Roel C. G. M. Loonen, Jan L. M. Hensen, Michael G. Debije and Albertus P. H. J. Schenning, "Electrically switchable polymer stabilised broadband infrared reflectors and their potential as smart windows for energy saving in buildings," Scientific Reports 5, doi: 10.1038/srep11773 (2015).

    6.H. Khandelwal, M. G. Debije, T. J. White and Albertus P. H. J. Schenning, "Electrically tunable infrared reflector with adjustable bandwidth broadening up to 1100 nm," Journal of Materials Chemistry A 4(16), 6064–6069 (2016).

    7.T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. Li, and T. J. Bunning, "Electromechanical and light tunable cholesteric liquid crystals," Optics Communications 283(18), 3434-3436 (2010).

    8.S.Y. Lu and L.C. Chien, "A polymer-stabilized single-layer color cholesteric liquid crystal display with anisotropic reflection," Applied Physics Letters 91(13), 131119 (2007).

    9.K. H. Kim, D. H. Song, Z. G. Shen, B. W. Park, K. H. Park, J. H. Lee, and T. H. Yoon, "Fast switching of long-pitch cholesteric liquid crystal device," Optics Express 19(11), 10174-10179 (2011).

    10.W. Russell Callen Donald C. O'Shea, William T. Rhodes, Introduction to lasers and their applications (Addison-Wesley, 1977).

    11.V. I. Kopp, Z.Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Progress in Quantum Electronics 27(6), 369-416 (2003).

    12.H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers, " Journal of Applied Physics 43(5), 2327-2335 (1972).

    13.M. Mitov and N. Dessaud, "Going beyond the reflectance limit of cholesteric liquid crystals," Nature materials 5(5), 361-364 (2006).

    14.I. Dierking, L. L. Kosbar, A. AfzaliArdakani, A. C. Lowe, and G. A. Held, "Network morphology of polymer stabilized liquid crystal," Applied Physics Letters 71(17), 2454-2456 (1997).

    15.J. Guo, Hui Cao, J. Wei, D. Zhang, F. Liu, G. Pan, D. Zhao, W. He, and H. Yang, "Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light," Applied Physics Letters 93(20), 201901 (2008).

    16.J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang and J. Wei, "Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure," Journal of Materials Chemistry 20(20), 4094–4102 (2010).

    17.K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals : Advances in Design, Fabrication, and Characterization (Wiley-VCH, Weinheim, Germany, 2004).

    18.P.G. De Gennes, "Calcul de la distorsion d'une structure cholesterique par un champ magnetique," Solid State Communications 6(3), 163 (1986).

    19.R. B. Meyer, "Effects of electric and magentic fields on structrue of cholesteric liquid crystals," Applied Physics Letters 12(9), 281-283 (1968).

    20.T. J. White, R. L. Bricker, L. V. Natarajan, V. P. Tondiglia, C. Bailey, L. Green, Q. Li, and T. J. Bunning, "Electromechanical and light tunable cholesteric liquid crystals," Optics Communications 283(18), 3434-3436 (2010).

    21.Paul S. Drzaic, Liquid Crystal Dispersions (World Scientific, Singapore, 1995).

    22.L. Zhang , K. Li , W. Hu , H. Cao , Z. Cheng , W. He , J. Xiao & H. Yang, "Broadband reflection mechanism of polymer stabilised cholesteric liquid crystal (PSChLC) with pitch gradient," Liquid Crystals 38(6), 673-677 (2011).

    23.J.-D. Lin, C.-L. Chu, H.-Y. Lin, Borwen You, C.-T. Horng, S.-Y. Huang, T.-S. Mo, C.-Y. Huang, and C.-R. Lee, "Wide-band tunable photonic bandgaps based on nematic-refilling cholesteric liquid crystal polymer template samples," Optical Materials Express 5(6), 1419–1430 (2015).

    24.H. Yamada, I. Manas-Zloczower and D. L. Feke, "Observation and analysis of the infiltration of polymer liquids into carbon black agglomerates," Chemical Engineering Science 53(11), 1963-1972 (1997).

    25.F. Bohin, D.L. Feke and I. Manas-Zloczower, "Determination of the infiltration kinetics of polymer into filler agglomerates using transient buoyancy measurements," Powder Technology 83(2), 159-162 (1995).

    26.P. M. Heertjes, and N. W. F. Kossen, "Measuring the contact angles of powder liquid system," Powder Technology 1(1), 33-42 (1967).

    27.S. Wu, and K. J. Brzozowski, "Surface free energy and polarity of organic pigments," Journal of Colloid and Interface Science 37(4), 686-690 (1971).

    28.S. Wu, Polymer Interface and Adhesion, Marcel Dekker, New York. (1982).

    29.J. Guo, H. Wu, F. Chen, L. Zhang, W. He, H. Yang and J. Wei, "Fabrication of multi-pitched photonic structure in cholesteric liquid crystals based on a polymer template with helical structure," Journal of Materials Chemistry 20(20), 4094–4102 (2010).

    30.Zhen Fang, Biofuels - Economy, Environment and Sustainability, InTech, 2013.

    下載圖示 校內:2020-11-12公開
    校外:2020-11-12公開
    QR CODE