簡易檢索 / 詳目顯示

研究生: 王士瑋
Wang, Shyh-Woei
論文名稱: 矽鍺雙載子電晶體高頻雜訊分析
The Analysis of High Frequency Noise in SiGe HBT
指導教授: 蘇炎坤
Su, Y.K.
莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 116
中文關鍵詞: 高頻雜訊雜訊矽鍺
外文關鍵詞: SiGe, noise, high frequency noise
相關次數: 點閱:59下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近年來,隨著生活水準提升,無線通訊的市場快速成長,無論是學術界或是工業界,無不極力地發展無線通訊的高科技。而微波元件在通訊系統中扮演一重要角色。以矽為基底的矽鍺異質接面雙載子電晶體,與傳統的矽雙載子電晶體比較起來,擁有較好的效能,也比三五族複合材料的微波元件有更佳的低成本效應。除此,在高頻段範圍操作下,矽鍺異質接面雙載子電晶體也被證實了有較佳的雜訊效能。

      本篇論文之重點在研究以矽為基底的矽鍺異質接面雙載子電晶體的雜訊特性以及幾何結構效應的分析,進而在一既定製程下,如何利用幾何結構的分析而找到一最佳化的高頻雜訊效應。除此,也針對不同集極摻雜濃度的矽鍺異質接面雙載子電晶體,來探討何種摻雜濃度之狀況下能擁有較佳的雜訊效應。為了節省功率的消耗,也對不同的集極偏壓來探討其對雜訊是否會造成影響。

      在高頻雜訊分析中,幾何結構的效應證實了一個矽鍺異質接面雙載子電晶體若能有較短的射極寬度、較長的射極長度以及多指結構,即能在高頻頻段的操作下有較佳的雜訊特性。對不同集極濃度摻雜的元件而言,”高速”及”標準”的元件,皆有相同的高頻雜訊效應,但是”高壓”元件在高集極電流密度時,高頻雜訊效應變得非常糟糕。若給予不同的集極電壓時,對元件而言,他的高頻雜訊效應幾乎是一樣的.

    In recent years, dramatic advancement in living standard has propelled the wireless communications to become the most one of important technologies, not only in academic circles but also in the industries. In particular, microwave transistors play an important role in these modern wireless communication systems. The performance of Si-based SiGe HBTs has already surpassed the traditional Si-BJT and the fabrication cost is substantially less than the other similar devices made out of III-V compound materials. In addition, high frequency operation of SiGe HBTs also stands out among others because of better noise performance.

    The purpose of this thesis is to investigate high frequency noise behavior in SiGe HBTs and their dependency on the device geometry. Next, we sent out to determine optimal device feature size which would yield the best noise performance in high frequency based on geometrical scaling considerations. In addition, the role played out by devices with different collector dopings will also be analyzed. On the power saving issue, different collector voltage bias conditions will also be taken into account.

    In geometry-dependent the shorter width, longer length, and multi-stripe would render the better RF noise performance. Categorically speaking, ”high frequency” and “standard” devices also have the better high frequency noise performance, however, the performance of “high voltage” device degrades substantially when operated in high collector current density. Finally, different collector voltage bias conditions virtually have no effect on high frequency noise performance.

    Contents Abstract (in Chinese) Abstract (in English) Acknowledgement Contents Table Captions Figure Captions CHAPTER 1 ReIntroduction 1 1.1 An Introduction to Heterojunction Bipolar Transistors…………………………………………….. 2 1.2 Background of SiGe HBT ……………………………. 3 1.3 Background of WLAN………………………………... 5 1.4 Background of LNA…………………………………... 6 1.5 Motivation…………………………………………….. 9 References………………………………………………… 12 CHAPTER 2 Ref Basic Theory of RF Noise 14 2.1 RF and Microwave Fundamental …………………….. 14 2.1.1 Scattering Parameters…….…………………… 14 2.1.2 Matching 15 2.1.3 Principle of Emitter Degeneration…………….. 16 2.2 Noise Fundamental ……………..….………………… 18 2.2.1 Types of Noise ……………………………….. 19 2.2.1.1 Thermal Noise……………………….. 20 2.2.1.2 Shot Noise……………………………. 20 2.2.1.3 Flicker Noise…………………………. 21 2.2.1.4 Burst Noise…………………………... 22 2.2.2 Noise Figure…………………………………... 23 2.2.2.1 Theory………………………………... 23 2.2.2.2 Noise in Cascaded Systems………….. 25 2.2.2.3 Noise Contributions from Different Stages………………………………… 25 References ………………………………………………… 31 CHAPTER 3 Ref Device Discussion and Measurement Setup 32 3.1 Device Fabrication….………………………………… 32 3.2 Device Structure……………………………………… 32 3.3 Measurement Technique……………………………… 34 3.3.1 I-V Measurement and High Frequency Characteristics………………………………… 34 3.3.2 Noise Measurement …………………………... 35 3.3.3 RF Noise………………………………………. 36 References ……………………. ……………………………... 45 CHAPTER 4 RefHigh Frequency Noise Characteristics of SiGe HBT 46 4.1 Parameters Versus Frequency ………………………… 46 4.2 Parameters Versus Collector Current density ………… 47 4.3 Parameters Versus Device Geometry ….…………….. 48 4.3.1 Emitter Length Variation……………………… 48 4.3.2 Emitter Width Variation……………………….. 52 4.3.3 Emitter Stripe Number Variation……………… 53 4.4 Parameters Versus Three Types of HBTs ……………. 54 4.5 Parameters Versus Different Bias Conditions……….... 56 References ………………………………………………… 96 CHAPTER 5 Ref Conclusion and Future Work 5.1 Conclusion..…………………………………………... 97 5.2 Future Work ………………………………………….. 99

    [1] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits,Cambridge University Press, 1998.

    [2] Shiming Zhang et al., “The Effects of Geometrical Scaling on the Frequency Response and Noise Performance of SiGe HBTs,” IEEE Trans.
    Electron Devices, vol. 49 Issue: 3, pp.429-435, 2002.

    [3] B.K. Oyama, and B.P Wong “GaAs HBT’s for Analog Circuits” IEEE,December 1993

    [4] B.Bayraktaroglu “GaAs HBT’s for Microwave Integrated Circuit” IEEE,1993.

    [5] I. Davies, R.A. Davies, S.P. March, N.A. Peniket, S.D. Wadsworth and R.H.Wallis, “GaAa/InGaP HBT Device and Circuit” IEEE, 1997

    [6] R. Lodge, “Advantages of SiGe for GSM RF front ends,” Electron. Eng.,vol. 71, no. 865, pp. 18–19, Feb. 1999. (UK).

    [7] R. Gotsfried, F. Beisswanger, S. Gerlach, A. Schuppen, H. Dietrich, U.Seiler, K. H. Bach, and J. Albers, “RFIC’s for mobile communication systems using SiGe bipolar technology,” IEEE Trans. Microwave Theory,Tech., pt. 2, vol. 46, pp. 661–668, May 1998.

    [8] M. Racanelli, Z. Zhang, J. Zhang, A. Kar-Roy, P. Joshi, A. Kalbureg, L.Nathawad, M. Todd, C. Ukah, C. Hu, C. Compton, K. Schuegraf, P. Ye, R.Dowlatshahi, G. Jolly, and P. Kempf, “BC35: A 0.35 _m 30 GHz, production RF BiCMOS technology,” in Proc. 1999 BCTM, 1999, pp. 125–128.

    [9] C. A. King, M. R. Frei, M. Mastrapasqua, K. K. Ng, Y. O. Kim, R. W.Johnson, S. Moinian, S. Martin, K.-I. Cong, F. P. Klemens, R. Tang, D.
    Nguyen, T.-I. Hsu, T. Campbell, S. J. Molloy, L. B. Fritzinger, T. G.Ivanov, K. K. Bourdelle, C. Lee, Y.-F. Chyan, M. S. Carroll, and C. W.Leung, “Very low colst graded SiGe base bipolar transistors for a high performance modular BiCMOS process,” in Proc. 1999 IEDM, 1999, pp. 565~568.

    [10] A. Chantre, M. Marty, J. L. Regolini, M. Mouis, J. de Pontcharra, D. Dutartre, C. Morin, D. Gloria, S. Jouan, R. Pantel, M. Laurens, and A.Monroy, “A high performance low complexity SiGe HBT for BiCMOS integration,” in Proc. 1998 BCTM, 1998, pp. 93–96.

    [11] J. Plouchart, H. Ainspan, and M. Soyuer, “A 5.2 GHz 3.3V I/Q SiGe RF transceiver,” in Custom IC Conf., 1999, pp. 217–220.

    [12] R. Johnson, M. Zierak, K. Outama, T. Bahn, A. Joseph, C. Cordero, J.Malinowski, K. Bard, T. Weeks, R. Milliken, T. Medve, G. May, W. Chong,
    K. Walter, S. Tempest, B. Chau, M. Boenke, M. Nelson, and D. Harame,“1.8 million transistor CMOS ASIC fabricated in a SiGe BiCMOS technology,” in IEDM Tech. Dig., 1998, pp. 217–220.

    [13] R. Groves, J. Malinowski, R. Volant, and D. Jadus, “High Q inductors in a SiGe BiCMOS process utilizing a thick metal process add-on module,” in Proc. 1999 BCTM, 1999, pp. 149–152.

    [14] R. Ludwig, P. Bretchko, 2000, RF Circuit Design - theory and applications, New Jersey, USA, Prentice Hall.

    [15] Thomas H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press, 1998.

    [16] Guillermo Gonzalez “MICROWAVE TRANSISTOR AMPLIFIERS Analysis and Design” Prentice Hall Upper Saddle River, New Jersey 07458

    [17] TSMC 0.35μm SiGe BiCMOS 3P3M 3.3V Design Rule

    [18] Agilent Technologies 8510C Network Analyzer Aystem-Operating and Programming Manual 3.0 Supersedes, January 31, 1994

    [19] Agilent Technologies NP5 Noise Parameter and S-Parameter Test System

    [20] Agilent Technologies Noise Figure Measurement Accuracy-The Y factor method

    [21] H. A. Haus et al., “Representation of noise in linear twoports,” Proc. IRE, vol. 48, pp. 69–74, Jan. 1960.

    [22] John D.Cressler, Guofu Niu “Silicon-Germanium Hterojunction Bipolar Transistor” 2003 ARTECH HOUSE,ING.

    [23] C.H. Lin, Y.K. Su, Y.Z Juang, R.W. Chuang, S.J. Chang, J.F. Chen and C.H. Tu “The effect of Geometry on the Noise Characterization of SiGe HBTs and Optimized Device Sizes for the Design of Low-Noise Amplifiers” IEEE transa. on microwave theory and techniques. VOL.52, NO.9. Sep. 2004.

    [24] G.niu, J.D. Cressler, S. Zhang, A. Joseph, and D.L. Harame “Nosie-gain tradeoff in SiGe HBTs” in Silicon Monolithic Integrated Circuits in RF Systems Topical Meeting Dig., 2001,pp. 187-191.

    [25] S.Zhang, G.Niu,J.D. Cressler, A.J. Joseph, G. Freeman. And D.L. Harame, "The effects of geometrical scaling on the frequency response and noise performance of SiGe HBTs” IEEE Trans. Electron Devices vol.49, pp429-435, Mar.2002

    [26] The thesis of “Institute of Electronics National Chiao Tung University" Modeling and Characterization of Noise in SiGe HBTs for RF Applications by Shng-Yi Huang

    下載圖示 校內:立即公開
    校外:2005-07-07公開
    QR CODE