簡易檢索 / 詳目顯示

研究生: 呂國豪
Lu, Kuo-Hao
論文名稱: 雷射輔助奈米機械拋光之研究
Study of the laser assisted mechanical nano-polishing
指導教授: 林震銘
Lin, Jehnming
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 111
中文關鍵詞: 勢能分子拋光
外文關鍵詞: molecular, polishing, potentail
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文的目的是以分子動力學理論,研究在雷射輔助下對於奈米鋁基材的拋光行為,並進行實驗與之比較。以fcc結構的鋁基材作為分子動力學模擬的拋光工件。本文數值方法使用Gear五階預測修正法來計算微系統原子的位置、速度與加速度,並配合Verlet鄰近表列法和Morse勢能函數來處理分子間的相互作用力。
    數值模擬的內容主要分成三部份:第一部分將討論以鎳金屬為磨粒、鋁金屬為平板的奈米拋光過程中,整個系統的受力以及溫度變化情形。第二部份則探討雷射能量的高低對拋光過程中,工件的溫度分布以及受力之影響。第三部份則是針對奈米拋光的加工機制來做區分以及探討。
    由數值模擬可以發現:(1)磨粒在經過工件之後會將工件原子移除,這可以視為在拋光時的真實行為。(2)雷射的能量會讓工件表面溫度瞬間上升,而減少熱影響區的範圍。(3)雷射造成的溫升可以減少拋光時磨粒對工件的施力。(4)加入雷射可以改善拋光過程中工件變形。

    Abstract
    The objective of this thesis is to study the laser-assisted nanopolishing phenomena of aluminum substrate with nickel particle by molecular dynamics theory, and the results are compared with experiments. The Gear’s fifth order predictor-corrector algorithms is adapted to calculate the positions, velocities, and accelerations of atoms under various displacement condition while the interactions of atoms are dealt with Verlet’s neighbor lists and Morse’s potential.
    The numerical simulation is to study the force of nanopolishing and temperature distribution of substrate with various laser energy densities, and investigate the mechanism of nanopolishing.
    In the numerical simulations, it can be found:(1) The nickel particle will remove aluminum atoms of substrate during the polishing processes. (2) The laser energy will increase the temperature of workpiece surface. The heating effect can reduce the local heat affected zone. (3) The force between particle and workpiece is decreased with increasing temperature by laser irradiation. (4) The laser can improve the surface quality of workpiece.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 IX 圖目錄 X 符號說明 XVI 第一章 緒論 1 1.1 研究背景及目的 1 1.2 文獻回顧 3 1.2.1化學輔助機械拋光之文獻回顧 3 1.2.2 雷射拋光技術之文獻回顧 4 1.2.3 分子動力學用於奈米磨擦之文獻回顧 6 1.3 本文架構 9 第二章 分子動力學理論 10 2.1分子動力學基本概念 10 2.2 勢能函數的選擇 12 2.2.1 勢能函數與原子間作用力之關係 12 2.2.2 硬球或軟球形式 14 2.2.3 二體勢能 15 2.2.4 截斷勢能 17 2.3初始條件設定 18 2.3.1 晶格排列 18 2.3.2 決定外型 19 2.3.3 週期邊界 19 2.3.4 最小映像法則 23 第三章 數值方法與物理模型之建立 25 3.1 選擇適當的勢能函數 25 3.1.1 Morse勢能函數 25 3.2 決定原子初始狀態 29 3.2.1 排列原子構成外型 29 3.2.2 給予原子初始速度 30 3.2.2.1 修正原子速度 31 3.3 決定系統初始溫度 31 3.3.1 溫度與原子速度分布之關係 31 3.3.2 修正系統溫度 33 3.3.3 計算各原子溫度 34 3.4 系統邊界條件之設定 37 3.5 數值技巧 39 3.5.1 Verlet 鄰近表列 39 3.5.2 Gear 五階預測修正法 40 3.6 雷射能量之計算 43 第四章 數值模擬結果 45 4.1 雷射能量對表面拋光之影響 45 4.1.1數值模擬內容說明 45 4.1.2 Stick-Slip數值模擬說明 49 4.2無雷射作用刮除現象之探討 51 4.2.1 機械行為之討論 51 4.2.2 工件總體溫度變化 54 4.2.3工件原子溫度分布 55 4.2.4 工件於切線及垂直方向受力變化 57 4.3 雷射功率對刮除現象影響之探討 59 4.3.1不同雷射能量造成之機械行為探討 59 4.3.2 不同雷射能量造成之工件總體溫度變化 65 4.3.3 不同雷射能量造成之工件原子溫度分布 67 4.3.4工件於切線及垂直方向受力變化 70 4.4 不同刮除深度影響之探討 72 4.4.1 有無雷射之機械行為與工件原子溫度分布討論 72 4.4.2 工件總體溫度變化 79 4.4.3工件於切線及垂直方向受力變化 81 4.5結果與討論 85 第五章 雷射輔助拋光實驗 90 5.1 實驗規劃 90 5.1.1實驗目的 90 5.1.2 實驗方法 90 5.1.3實驗步驟與步驟 91 5.2 雷射能量對於材料磨耗之影響 93 5.3 結果討論 97 第六章 結論與未來發展 100 6.1結論 100 6.2未來建議與發展 102 參考文獻 104 附錄A 108 附錄B 109 附錄C 110 自述 111

    [1]Malshe A. P., Park B. S., Brown W. D., Naseem H. A., “A review of techniques for polishing and planarizing chemically vapor-deposited(CVD)diamond films and substrates”, Diamond and Related Materials, vol. 8, pp. 1198-1213, 1999.
    [2]Bruton E., “Diamonds”, NAG, London, 1970.
    [3]Yoshikawa, “Diamond Optics III”, SPIE, vol. 1325, n210, 1990.
    [4]Raju G. S., “Chemical assisted mechanical polishing and planarization of CVD diamond substrates for MCM application”, M. S. E. E Thesis University of Arkansas Library, Fayetteville, 1994.
    [5]Ozkan A. M., Malshe A. P., Brown W. D., “Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates” , Diamond and Related Materials, vol. 6, pp. 1789, 1997.
    [6]Hirata A., Tokura H., Yoshigawa M., “Smoothing of chemically vapour deposited diamond films by ion beam irradiation”, Thin Soild Films, vol. 212, n43, 1992.
    [7]曾偉志,VLSI-先進模組技術課程 ,pp. 48-51,1998.
    [8]李臻誠,晶圓化學機械研磨之研磨液流場及磨潤性能理論分析與實驗,國立成功大學機械工程學系,碩士論文,民國87年.
    [9]Preston F. W., “The theory and design of plate glass polishing machines”, J. Soc. Glass technol., vol. 11 , pp. 214-247, 1927.
    [10]Cook L. M., “Chemical process in glass polishing”, J. Noncrystalline Solid, vol. 120, pp. 152-171, 1990.
    [11]Runnels S. R., Renteln P., “Modeling the effect of polish pad deformation on wafer surface stress distribution during chemical mechanical polishing”, Dielectric Sci. Technol., pp. 100-121, 1993.
    [12]Runnels S. R., “Feature-Scale Fluid-Based Erosion Modeling for chemical mechanical polishing”, Electrochemical Socity Active Member, vol. 141, n7, pp. 1900-1904, July 1994.
    [13]Runnels S. R., Eyman L. M., “Tribology analysis of chemical mecanical polishing”, Electrochemical Socity Active Member, vol. 141, n6, pp. 1698-1701, June 1994.
    [14]Yu T. K., Chris C., Lee M. O., “A statistical polishing Pad-Model for chemical mechanical polishing”, IEEE, pp. 35, 1993.
    [15]Tseng W. T., Liu C. W., Yeh C. f., “Effect of mechanical characteristics on the chemical mechanical polishing of dielectric thin films”, Thinsolid Films, vol. 290-291, pp. 458-463, 1996.
    [16]Tezuka S., Yoshikawa M., “Study of the marking processing of IC packages by YAG laser” ,International Journal of the Japan Society for Precision Engineering, vol. 25, n4, pp. 297-290, Dec. 1991.
    [17]Rothschild M., Arnone C., Ehrlich D. J., “Excimer-Laser Etching of Diamond and hard carbon films by direct writing and optical projection”, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 4, n1, pp. 310-314 , Jan. 1986.
    [18]Ageev V. P., Armeyev V. Y., Chapliev N. I., Kuzmichov A. V., Pimenov S. M., Ralchenko V. G., “Laser processing of diamond and diamond-like films”, Materials and Manufacturing Processes, vol. 8, n1, p 1-8, 1993.
    [19]Ravi K. V., Zarifis V. G., “Laser polishing of diamond,Proceedings 3rd International Symposium on Diamond Materials”, The Electrochemical Society, Pennington, 1993.
    [20]Shao T. M., Hua M., Tam H. Y., Cheung H. M., “An approach to modeling of laser polishing of metals”, Surface & Coatings technology, vol. 197, pp. 77-84, 2005.
    [21]鄭茂川,使用準分子雷射於鑽石磨的平坦化研究,國立成功大學機械工程學系,碩士論文,民國92年.
    [22]Pierson H. O., “Handbook of Carbon”, Graphite,Diamond amd Fullerenes:properties、processing and application, Noyes Publications, 1993.
    [23]Windholz R., Molian P. A., “Nanosecond pulsed excimer laser machining of chemical vapour deposited diamond and highly oriented pyrolytic graphite: Part I An experimental investigation”, Journal of Materials Science, vol. 32, pp. 4295, 1997.
    [24]Windholz R., Molian P. A., “Nanosecond pulsed excimer laser machining of chemically vapour-deposited diamond and graphite: Part II Analysis and modeling” , Journal of Materials Science, vol. 33, pp.523, 1998.
    [25]Laguarta F., Lupon N., Armengol J., “Optical glass polishing by controlled laser surface-heat treatment”, Applied Optics vol. 33, n27, 20, September 1994.
    [26]Sysoev V. K., “Laser etching and polishing of quartz tubes”, Glass and Ceramics vol. 60, pp. 3-4, 2003.
    [27]Tokarev V. N., Wilson J. I. B., Jubber M. G., John P., Milne D. K., “Modelling of self-limiting laser ablation of sufaces:application to the polishing of diamond films”, Diamond and Related Material, vol. 4, pp.169-176 , 1995.
    [28]Pimenov S. M., Kononenko V. V., Ralchenko V. G., Konov V. I., Gloor S., Luthy W., Weber H. P., Khomich A. V., “Laser polishing of diamond plates”, Appl. Phys. vol. 69, pp.81-88, 1999.
    [29]Maekawa K., Itoh A., “Friction and tool wear in nano-scale maching-a molecular dynamics approach”, Wear, vol. 188, pp. 115-122, 1995.
    [30]Fang T. H., Weng C. L., “Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale”, Nanotechnology, vol. 11, pp. 148-153, 2000.
    [31]Fang T. H., Weng C. L., Chang J. G., “Molecular dynamics simulation of nano-lithography process using atomic force microscopy”, Surface Science, vol. 501, pp. 138-147, 2002.
    [32]Ye Y.Y., Biswas R., Morris J. R., “A Bastawros and A Chandra, Molecular dynamics simulation of nanoscale maching of copper”, Nanotechnology, vol. 14, pp. 390-396, 2003.
    [33]Evgueni C., James B. A., “Molecular dynamics simulations of mechanical deformation of amorphous silicon dioxide during chemical-mechanical polishing”, Journal of Applied Physics, vol. 94, n6, 2003.
    [34]Jun Z., James B. A., “Molecular dynamics simulations of asperity shear in aluminum”, Journal of Applied Physics, vol.94, n7, 2003.
    [35]許政欽,奈米磨粒在工件上滾動所引發現象之探討:分子動力法分析,國立中山大學機械與機電工程學系,碩士論文,民國92年.
    [36]陳道隆,以分子動力學研究奈米級微結構之拉伸、壓縮、扭轉變形機制,國立成功大學機械工程學系,碩士論文,民國90年.
    [37]Haile J. M., “Molecular Dynamics Simulation:Elementary Methods”, John Wiely & Sons, Inc., USA, 1992
    [38]Miyazaki N., Shiozaki Y., “Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method”, JSME, Series A, vol. 39, n4, 1996.
    [39]Girifalco L. A., Weizer V. G., “Application of the Morse Potential Function to Cubic Metals”, Physical Review , vol. 114, n3, 1959.
    [40]Imafuku M., Sasajima Y, Yamamoto R., Doyama M., “Computer simulations of the structures of the metallic superlattices Au/Ni and Cu/Ni and their elastic moduli”, J. Phys. F:Met. Phys., vol. 16, pp. 823-829, 1986.
    [41]葉哲宜,以分子動力學模擬奈米級量子點之組成,國立成功大學機械工程學系,碩士論文,民國92年.
    [42]丁勝懋,雷射工程導論,中央圖書出版社,中華民國92年4月.
    [43]Steen W. M., “Laser Material Processing”, Springer-Verlag London Limited 1998, 2nd 2001.
    [44]陳俊良,雷射壓印技術之研究,國立成功大學機械工程學系,碩士論文,民國93年.
    [45]Li B., Clapp P. C., Rifkin J. A., Zhang X. M., “Molecular dynamics simulation of stick-slip”, Journal of Applied Physics, vol. 90, n6, September 2001.
    [46]Incropera F. P., Dewitt D. P., “Fundamentals of Heat and Mass Transfer”, John Wiley & Sons , Inc, 2002.
    [47]Carslaw H. S., Jaeger J. C., “Conduction of Heat In Solids”, Oxford University, 1959.

    下載圖示 校內:2016-08-22公開
    校外:2016-08-22公開
    QR CODE