| 研究生: |
謝雅德 Hsieh, Ya-De |
|---|---|
| 論文名稱: |
自主飄移的建模,規劃與控制 Autonomous Drift Modeling, Planning and Control |
| 指導教授: |
譚俊豪
Tarn, Jiun-Haur |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 平衡點 、飄移 、最佳化 |
| 外文關鍵詞: | MPC, ROS, Drift, SLAM, LQR, Equilibrium Analysis |
| 相關次數: | 點閱:119 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飄移是一項極具困難度的駕駛技巧,需要經過經驗的累積才有辦法達成,透過油門以及剎車的控制,車子可以獲得一個較大的側向滑行力來產生飄移的現象,本篇旨在對真實模型車進行建模,建立其具有飄移特性的非線性模型,並對其進行分析,找出其平衡點,有關平衡點的細節將在第五章詳細討論,且在模擬中藉由LQR控制能夠讓車子達到維持連續的漂移現象。
在實地驗證控制的部分,使用MPC控制理論,藉由車手預先設定好的軌跡以及操控數據,讓MPC控制理論使用最佳化的方式求解出控制輸入來達成與事先規劃的路線相似的飄移情形,有關詳細控制理論將在第六章進行探討。
Drifting represents an extreme maneuver that is beyond the skill set of the average people, requiring skillful timing of pedal brake, handbrake and steering wheel. Driver causes the vehicle to rotate rapidly and slide, into the unstable situation. This paper investigates the analysis of unstable drifting condition, equilibrium point analysis and identify the slip vehicle model, in order to propose a control strategy to make automatically drifting possible. The parameters for the model are identified in Chapter 3 & 4 and the simulation results of the modelled vehicle are compared to measured experimental data. When talking about the high side-slip maneuvers, it falls into one of two categories: sustained drift and transient drift. Sustained drift focuses on stabilizing the vehicle around an unstable equilibrium (also call steady state circular drifting), while transient drift focuses on entirely maintaining a drift state. To the authors’ knowledge, all experimental validation for drift control algorithms have used a motion capture system or a differential GPS system. However, due to the reality consideration, here use only the Extended Kalman Filter with necessary sensors to estimate the system state. For the purpose of presenting a steady state drifting, the modelled vehicle equilibrium point analysis is discussed in Chapter 5. Then a Linear Quadratic Regulator control algorithm is designed to control the system from normal stable situation into unstable drifting condition in simulation. In experiment, the Model Predictive Control is implement on the 1:10 RC car to achieve transient autonomous drift, and the details will be discussed in Chapter 6.
[1] Gerdes, Hindiyeh, A Controller Framework for Autonomous Drifting: Design, Stability, and Experimental Validation, 2014.
[2] Velenis, E., Katzourakis, D., Frazzoli, E., Tsiotras, P., and, Stabilization of Steady-State Drifting for a RWD Vehicle, 2011.
[3] E. Velenis & P. Tsiotras, Minimum time vs maximum exit velocity path optimization during cornering, 2005.
[4] Culter, Real-world reinforcement learning via multi-fidelity simulators, 2015.
[5] Chakraborty, I.P. Tsiotras & R. S. Diaz, Time-optimal vehicle posture control to mitigate unavoidable collisions using conventional control inputs., 2013.
[6] Kolter J. Z., C. Plagemann, D.T. Jackson, A. Y. Ng, & S. Thrun, A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving, 2010.
[7] Hindiyeh, Rami Yusef, Dynamic and control of drifting in automobiles, 2013.
[8] Liniger, A., A. Domahidi, & M. Morari, Optimization-based autonomous racing of 1:43 scale rc cars, 2015.
[9] Cederic Stutz, Manuel Muhlebach and Marius Schmitt, Drift Modeling via System Identification, 2011.
[10] F.Zhang , J. Gonzales , K.Li & F. Borrelli, Autonomous Drifting with Onboard Sensors, 2016.
[11] E. Jelavic & J. Gonzales & F. Borrelli, Autonomous Drift Parking using a Switched Control Strategy with Onboard Sensors, 2017.
[12] F.Zhang , J. Gonzales , K.Li & F. Borrelli, Autonomous Drift Cornering with Mixed Open-loop and Closed-loop Control, 2017.
[13] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and M. Diehl, Time-Optimal Path Tracking for Robots: A Convex Optimization Approach, 2009.
[14] R. Verschueren, Design and implementation od a time-optimal controller for model race cars, 2014.
[15] Andreas Wachter, Carl Laird, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, 2005.
[16] Rami Y. Hindiyeh & J. Christian Gerdes, Analysis and control of high sideslip manoeuvres, 2010.
[17] E. Velenis, FWD Vehicle Drfiting Control: The Handbrake-Cornering Technique, 2011.
[18] Davide Tavernini, Efstathios Velenis, Roberto Lot & Matteo Massaro, The Optimality of the Handbrake Cornering Technique, 2014.
[19] G.T. He, Optimization-Based Path Planning、Trajectory Tracking and Obstacle Avoidance of 1:10 scale RC car, 2018.
[20] C.T. Shen, Development and Ground Test of Flight Control System for Sounding Rockets, 2018.
[21] S. Colas, A Convex Optimization Approach To Time-Optimum Path Planning, 2009.
[22] L. Wunderli, MPC based Trajectory Tracking for 1:43 scale Race Cars, 2011.