簡易檢索 / 詳目顯示

研究生: 黃粵旻
Huang, Yue-Min
論文名稱: 葉片形狀對小型水力發電機效率之影響
The effect of blade shapes on the efficiency of a small hydroelectric generator
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 91
中文關鍵詞: 卡普蘭式水輪機水力發電田口方法葉片
外文關鍵詞: Kaplan turbine, hydraulic generator, Taguchi method, blade design
相關次數: 點閱:166下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水力發電是利用河流、湖泊及水庫等具有位能及動能的水流轉換成水輪機的動能,水輪機再將能量轉動發電機使機械能轉為電能。故水力發電是將水的位能或動能轉變為機械能,再轉變為電能的過程。
    常見水力發電之水輪機中,主要可分為卡普蘭式水輪機(Kaplan turbine)以及佩爾托式水輪機(Pelton turbine),其中卡普蘭式較適合低水位落差,且效率較為高。本研究之目的在於研製一小型水力發電系統,以最少的水量帶動水輪機葉片使發電機發電,以最環保之型態使用生活中一些可再利用之能源,運用於照明設備等各項電器用品,可安裝於高低水位落差的地形環境,例如:都市高樓排水系統等。
    研究主要分兩個部分,分別為發電機構本體設計及葉片外型設計。發電機構本體設計部分則參考永磁式發電機的結構,設計一雙層磁石轉子以及中央線圈定子,使發電機在有限的空間下發電效率能提升,而能於最小流量下發電。葉片外型設計的部分則先透過速度三角形理論並配合田口方法,進行葉片之設計,接著利用數值模擬軟體以及實驗找出較高性能之葉片外型。
    本研究使用田口實驗設計的L18直交表作實驗,依葉片數量、葉片角度及輪轂直徑作為控制因子,三水準,並定義發電電壓為品質特性,其理想機能採取望大作為指標,依實驗的結果找出能使發電機達到最大機電轉換效率的原始葉片設計,並比較在不同流量時各組葉片之發電量,觀察分別不同流量時適用之葉片組合。
    透過數值模擬及配合田口實驗,依葉片數量、葉片角度及輪轂直徑作為控制因子,並使用L18直交表作為實驗的最佳分析組合結果可知:葉片數量多之葉片會有阻流之現象,故葉片數量6片適中,葉片角度適中的葉形具有較佳之發電效率,葉片角度較大之葉片的漏流現象較嚴重。本研究中經由田口分析機電轉換效率較佳之葉片,流量為4 m^3⁄hr,會有最大之發電功率1.44W左右,機電轉換效率為52.1%。

    Turbines are widely used in hydropower generators and can be typically categorized into Pelton and Kaplan types. Kaplan turbines are usually used in low water head applications and are more efficient than the other type. In this thesis, a small hydraulic power generator of Kaplan type for driving LEDs is designed, implemented and tested. I hope the generator can be environmental friendly and reuse wastewater. The turbines are designed based on the theory of velocity triangle, and then the efficiency is examined by simulations and experiments. From the principle of the generator, a generator using permanent magnets with a small and simple structure and easy to carry is developed.
    The results show that the optimized blade with special blade angle performs better whereas the leakage flow with a larger blade twist angle is more serious. The design of six blades is better than other blade numbers by the Taguchi Method. The test result shows that at the flow rate of 4 m3/hr, the rotation speed of the blades reaches 1200 rpm with the maximum power of 1.44 W, and the total efficiency of 52.1%.

    摘要 I EXTEDN ABSTRACT III 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號說明 XVII 第一章緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3文獻回顧 3 1-4論文架構 18 第二章 水輪機及發電機之理論與型式 19 2-1水輪機之原理[20~22] 19 2-1-1水輪機之形式 20 2-2發電機之原理[22~24] 22 2-2-1同步發電機之形式[22~24] 23 2-2-2永磁式發電機 24 2-2-3永久磁石 24 2-2-4發電機電性測試 25 2-2-5 馬達encoder轉速控制 26 第三章 葉片設計理論與田口方法 28 3-1葉片設計之基本原理 28 3-2葉片設計之參數 30 3-3實驗設計法 32 3-3-1 田口方法簡介[29] 33 3-3-2 因子種類 33 3-3-3 直交表 34 3-3-4 訊號與雜訊比 35 3-3-5 因子反應分析 37 第四章 CFD數值模擬 38 4-1 流體之設定 38 4-2統御方程式 39 4-3數值模型及基本假設 41 4-3-1幾何模型之建立 41 4-3-2數值網格切割 42 4-3-3邊界條件之設定 44 4-4流場模型之選用 45 4-4-1紊流模型 45 4-4-2壁面函數 46 第五章 實驗方法與設備 49 5-1實驗流程與方法 49 5-2實驗模型 50 5-2-1葉片模型 50 5-2-2發電機機構設計 52 5-2-4 發電系統測試設備 53 5-2-5測試設備 54 5-3田口分析 57 第六章 結果與討論 60 6-1葉片表面壓力分佈之模擬結果 60 6-1-1模擬結果因子反應分析 66 6-1-2模擬結果力矩與轉動慣量之比較 67 6-2小型水力發電系統測試結果之探討 69 6-2-1 田口方法初步結果 69 6-2-2 發電機於不同流量之比較 72 6-3模擬值與實驗值誤差探討 79 6-4最佳化葉片發電效率提升之比較 80 6-4-1水力發電機於不同流量最大發電功率 80 6-4-2水力發電機之水輪機理論功率 81 6-4-3水力發電機之機電轉換效率 84 6-5發電機點亮白光砲彈型LED實驗 85 第七章 結論與建議 86 7-1結論 86 7-2建議 87 參考文獻 88

    [1] 林肯編,低轉速輪軸發電機之研發,逢甲大學電機工程學系碩士論文,2005
    [2] 季宏,高功率行星式發電機構之研製與應用研究,崑山科技大學光電工程研究所碩士論文,2011
    [3] D. A. Howey, A. Bansal, and A. S. Holmes, Design and Performance of A Centimeter - Scale Shrouded Wind Turbine for Energy Harvesting, Smart Material and Structures, vol. 20, pp.085021, 2011.
    [4] 楊文政,小型水力發電機之研製,成功大學工程科學系碩士論文,2012
    [5] J. K. Watterson and S. R. Raghunathan, Investigation of Wells Turbine Performance Using 3-D CFD, Proceedings of the 31st Intersociety, vol.3, pp.1777-1782, 1996.
    [6]L. M. C. Cato and A. F. deo. falco, Aerodynamics of the Wells Turbine, International Journal of Mechanical Sciences, vol.30, pp.383-395, 1988

    [7] C. Li, S. L. Wang and Y. Jia, The Performance of a Centrifugal Fan with Enlarged Impeller, Energy Conversion and Management, vol.52, pp.2902-2910, 2011
    [8] H. Wu, R. L. Miorini, D. Tan and J. Katz, Turbulence within the Tip-leakage Vortex of an Axial Waterjet Pump, AIAA Journal, vol.50, 2012
    [9] ZHANG Li, JIN Yingzi , JIN Yuzhen, Effect of Tip Flange on Tip Leakage Flow of Small Axial Flow Fans, Journal of Thermal Science Vol.23, 2014
    [10] J. Maunus, S. Grace, D. Sondak and V. Takhot, Characteristics of Turbulence in a Turbofan Stage, ASME Journal of Turbomachinery, vol.135,2013
    [11] 孟德化,軸流式風扇葉片設計,成功大學航太工程學系碩士論文,1995
    [12] 陳朝憶,水力動力LED照明技術之研究,成功大學工程科學系碩士論文,2007
    [13] 陳正隆,小型水力發電機之研究,成功大學工程科學系碩士論文,2013
    [14] 黃建維,葉片形狀對小型水力發電機效率之影響,成功大學工程科學系碩士論文,2014
    [15] 傅慧萍,船槳整體及螺旋槳誘導的船體表面脈動壓力計算,哈爾濱工程大學學報,第30卷第7期,2009
    [16] Z. M. Ye and T.T. Zhu, Reasearch of Guide Vane Proposals for the Single-stage Axial-flow Fans Used in the Large Generator, IEEE International Conference, SUPERGEN, 2009
    [17] J. Hurault, S. Kouidri and F. Bakir, Experimental Ivestigations on Wall Pressure Measurement on The Blade of Axial Fans, Journal of Experimental Thermal and Fluid Science, vol.40, pp.29-37, 2012
    [18] J. D. Denton, Some Limitations of Turbomachinery CFD, Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and air, GT2010-22540, 2010
    [19] K. Takeishi, M. Matsuura, S.Aoki, and T. Santo, An Experimental Study of Heat Transfer and Flim Cooling on Low Aspect Ratio Turbine Nozzles, ASME, Journal of Turbomachinery, pp.488-496, 1990
    [20] G. Krivchenko,Hydraulic machines;turbines and pumps 2^nd , Lewis Publishers, 1994.
    [21] Ir. Granet,P.E., Fluid Mechanics 4^nd,Prentice Hall,1996
    [22] S.L.Dixon and C.A.Hall,Fluid Mechanics and Thermodynamics of Turbomachinery 6^nd,Elsevier,2010
    [23] 古正信,電工機械(電機機械),志光教育文化出版社,2012
    [24] 黃昌圳、王孟輝、鄭進興、鄭世平、曾文森,電機機械,高立圖書有限公司,2006
    [25] 蕭進松、謝承達,電機機械,全華科技圖書,2007
    [26] A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application 2^nd, John Wiley and Sons, 1957.
    [27] B. Eck, Fans, Pregamon Press, New York, 1973.
    [28] 林志遠,軸流風扇的性能提升設計與測試,成功大學航太工程學系碩士論文,1997
    [29]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2012
    [30] H.-H. Lee, Finite Element Simulations with ANSYS Workbench 14 Theory-Applications-Case Studies,2013
    [31] ANSYS Fluent 12.0 Theory Guide, 2009
    [32] D. Choudhury, Introduction to the Renormalization Group Method and Turbulence Modeling, Fluent Inc. Technical Menorandum, TM-107, 1993.
    [33] B. Kader, Temperature and Concentration Profiles in Fully Turbulent Boundary Layers, Int. Journal of Heat Mass Transfer, vol. 24, pp.1541-1544, 1981.
    [34]F. White and G. Ghristoph, A Simple New Analysis of Compressible Turbulent Skin Friction Under Arbitrary Condition, Technical Report AFFDL-TR-70-133, 1971.
    [35]P. Huang, P. Bradshaw, and T. Coakley, Skin Friction and Velocity Profile Family for Compressible Turbulent Boundary Layers, AIAA Journal, vol.33, pp.1600-1604, 1993.
    [36] www.mcad.comSolidworks Premier Partner/Stratasys Reseller
    [37] A. Hughes and B. Drury, Electric Motors and Driver 4^nd : Fundamentals,Type,and Applications,Elsevier,2013

    下載圖示 校內:2020-08-21公開
    校外:2020-08-21公開
    QR CODE